

Monotonicity, Day 1

Luka Crnič, Yosef Grodzinsky, 7/8/23

https://lukacrnic.com/monotonicity

- logic in reasoning
- logic in grammar
- $\stackrel{\scriptscriptstyle \mathsf{I}}{\bullet}$ logic in language processing

logic in grammar

lessons learned (and still learning)

- no autonomy of grammar from logic
- (partly) unfortunate split of the two endeavors

what we will (re)learn here

- intricate ways in which logic affects language
 - monotonicity-sensitive phenomena (esp. npis)
 - description requires environments (not operators)
 - + hint at why this may be the case (explanation)
 - focus on modal and comparative sentences

lessons learned (and still learning)

• grammatical processes significanly affect language processing, and they have a pronounced reflection in the brain (and similarly for logical processes).

what we will (re)learn here

- logic and quantification in behavioral and fMRI experiments
 - monotonicity-related experiments
 - description requires environments (not operators)
 - (possible) neural locus of processing monotonicity

convergence of results in grammar/logic/processing!

ancient logic and monotonicity patterns

the organon

- includes Aristotle's theory of inference ("the syllogistic")
- syllogisms involving quantificational operators: all, none, some (not)
- representation of their monotonicity properties (environment-based)

peripatetics

- (wholly) hypothetical syllogisms
- (pre) modus tollens (esp Theophrastus)
- representation of their monotonicity properties (environment-based)

syllogisms and monotonicity patterns in quantified sentences

Table 2: DM in the "subject" predicate, UM in the "predicate" predicate

prelim terminology: if replacing a predicate (A) with a weaker predicate (B, where A⊆B) in a sentence S results in a stronger/weaker meaning of S, we say that we have 'Downward-Monotonicity'/'Upward-Monotonicity' in S with respect to A.

syllogisms and monotonicity patterns in quantified sentences

Table 3: Celarent (modified order); DM in the "subject" predicate

Table 4: Camestres; DM in the "predicate" predicate

syllogisms and monotonicity patterns in quantified sentences (w negation)

Table 5: Darii; UM in the "predicate" predicate

Table 6: Baroco; DM in the (negated) "predicate" predicate

syllogisms and monotonicity patterns in conditional sentences

Table 7: Syllogism 'from a hypothesis'; DM in the "predicate" predicate

Table 8: Wholly hypothetical syllogism; DM in antecedent, UM in consequent

(cf. Bobzien 2000, 2002, ia)

- impression from the preceding: logic as something we do with language
- but: logic (also) as something we do in language (constantly, unawares*)
- demonstrable in many ways: scalar implicatures, weak islands and their obviation, aspectual modification, exceptive modification, scope economy, definiteness effect, moore sentences, embedding epistemic modals, etc.
- we will focus on a specific class of such phenomena, ie, on specific expressions whose acceptability depends on more than their syntactic properties:
 - so-called negative polarity items (npis; any, ever, etc)

suggestive parallels: npis - monotonicity patterns

*Every student is any good.

*Some student is any good.

$\mathsf{A}\subseteq\mathsf{B}$

Some student is not any good.

No student who smiled is any good.

No student who is any good smiled.

suggestive parallels: monotonicity patterns

generalization from suggestive parallels

- (1) An npi is acceptable iff it is contained in a term of a quantificational or a conditional sentence that exhibits downward-monotonicity wrt the term.
- (2) Conditional sentence:

If [A Aristotle is anyone of significance], Boethius is happy is DM wrt A; anyone of significance is contained in A

obvious undergeneration issues

- a. *Aristotle gave talks after he was as anyone of significance.
 b. Aristotle gave talks before he was anyone of significance.
- (4) a. Boethius was smarter than any other philosopher was.
 - b. Boethius was as smart as any other philosopher was.

classical entailment

(5) A sentence S entails another sentence S' iff

for every point of evaluation α , $\llbracket S \rrbracket^{\alpha} \to \llbracket S' \rrbracket^{\alpha}$.

(sloppy terminology: entailment between syntactic, semantic objects)

generalizing entailment

- (6) conjoinable/boolean types
 - a. t is a conjoinable type
 - b. if α is a type, and β is a conjoinable type, $(\alpha\beta)$ is a conjoinable type
- (7) An object C entails another object C', $C \Rightarrow C'$, iff
 - i) C and C' are of type t and C \rightarrow C', or
 - ii) C and C' are of a conjoinable type $(\alpha\beta)$, and for all X of type α s.t. [C](X) and [C'](X) are defined, C(X) \Rightarrow C'(X).

(Strawson entailment, see below; von Fintel 1999)

upward monotonicity

(8) A function F of type $(\alpha\beta)$ is upward-monotone (UM) iff α and β are conjoinable types, and for all A, A' of type α : A \Rightarrow A', F(A) \Rightarrow F(A').

downward monotonicity

(9) A function F of type (αβ) is downward-monotone (DM) iff α and β are conjoinable types, and for all A, A' of type α: A ⇒ A', F(A') ⇒ F(A).

(10) $\llbracket not \rrbracket = [\lambda p. \neg p]$ is a DM function.

For any S,S': if $S \Rightarrow S'$ and [not](S'), then [not](S) (modus tollens).

(11)
$$\llbracket every \rrbracket = [\lambda P.\lambda Q. \forall x: P(x) \rightarrow Q(x)]$$
 is a DM function.

Assume $P \Rightarrow P'$, [every](P')(Q) and $\neg [every](P)(Q)$ for some Q. Hence: $\exists x: P(x) \land \neg Q(x)$. Hence: $\exists x: P'(x) \land \neg Q(x)$. Hence: $\neg [every](P')(Q)$. \oint

(12) [[every student]] = [λP . $\forall x$: student(x) $\rightarrow P(x)$] is a UM function. Assume P \Rightarrow P', [[every student]](P) and \neg [[every student]](P'). Hence: $\exists x$: student x $\land \neg P'(x)$. Hence: $\exists x$: student x $\land \neg P(x)$. Hence: \neg [[every student]](P). \notin (13) **Op-Condition:** An npi is acceptable iff it is c-commanded at LF by a constituent that denotes a downward-monotone function.

predictions 1: any-DP acceptable in the scope of not, every, if

not [Aristotle is anyone of significance]]

not c-commands anyone of significance, and [not] is a DM function

[[Every [student who read any book]] smiled] every c-commands any book, and [every] is a DM function

[no medieval philosopher] [was anyone of significance]]

no medieval philosopher c-commands anyone of significance, and [[no medieval philosopher]] is a DM function

(13) **Op-Condition:** An npi is acceptable iff it is c-commanded at LF by a constituent that denotes a downward-monotone function.

predictions 2: any-DP unacceptable in the (immediate) scope of every NP, if S

*[[Every student] [is anyone of significance]]

every student is the only pertinent expression that c-commands anyone of significance, and [every student] is a UM function

The meanings of *before, after, as, more,* etc., (or the meanings of their *compo-sitiones*) must yet be provided in order to determine the predictions. See below.

upward monotonicity

(14) A constituent C of a conjoinable type β is upward-monotone with respect to the position of a constituent A of a conjoinable type α that C dominates iff $[\lambda X_{\alpha} \cdot [C]^{[A \to X]}]$ is a UM function. (cf. Gajewski 2005)

alternative statement (not equivalent!)

(15) A constituent C of a conjoinable type β is upward-monotone with respect to a constituent A of a conjoinable type α that C dominates iff $\forall X: [A] \Rightarrow [X] \rightarrow [C] \Rightarrow [C[A/X]] \text{ (or } \forall X: [X] \Rightarrow [A] \rightarrow [C[A/X]] \Rightarrow [C])$

terminological convention: upward-monotonicity wrt the position of a phrase

downward monotonicity

(16) A constituent C of a conjoinable type β is downward-monotone with respect to the position of a constituent A of a conjoinable type α that C dominates iff $[\lambda X_{\alpha}. [C]^{[A \to X]}]$ is a DM function. (cf. Gajewski 2005)

alternative statement (not equivalent!)

(17) A constituent C of a conjoinable type β is downward-monotone with respect to a constituent A of a conjoinable type α that C dominates iff $\forall X: [A] \Rightarrow [X] \rightarrow [C[A/X]] \Rightarrow [C] (or <math>\forall X: [X] \Rightarrow [A] \rightarrow [C[A/X]])$

terminological convention: downward-monotonicity wrt the position of a phrase

- (18) [not S] is DM wrt S. $\lambda X.[[not S]]^{[S \to X]} = [[neg]]. [[neg]] is a DM function (see above).$
- (19) [every NP] is DM wrt NP, for any NP. $\lambda X. [every NP]^{[NP \to X]} = [every]. [every] is a DM function (see above).$
- (20) [every student who read a book] is DM wrt a book. λX . [every student who read a book] $^{[a \text{ book} \to X]} = [\lambda X.\lambda P. \forall x: X(\lambda z. \text{ student } x \text{ read } z) \to P(x)]$ is a DM function.

Assume: $Z\Rightarrow Z'$, $[\forall x: Z'(\lambda z. student x read z) \rightarrow P(x)]$ for some P, and $[\neg\forall x: Z(\lambda z. student x read z) \rightarrow P(x)]$. Hence: $\exists x: Z(\lambda z. student x read z) \land \neg P(x)$. Hence: $\exists x: Z'(\lambda z. student x read z) \land \neg P(x)$. Hence: $\neg\forall x: Z'(\lambda z. student x read z) \rightarrow P(x)$. \oint (21) **Env-Condition:** An npi is acceptable iff it occurs at LF in a constituent that is downward-monotone with respect to its position.

predictions 1: *any-DP* acceptable in the scope of *every, not, if* (in our above examples, not in every other configuration)

[s not [Aristotle is anyone of significance]]

S is DM wrt anyone of significance.

[*s* [*DP* every student who read any book]] smiled]

Both S and DP are DM wrt any book.

[s no medieval philosopher was anyone of significance]

S is DM wrt anyone of significance.

(21) **Env-Condition:** An npi is acceptable iff it occurs at LF in a constituent that is downward-monotone with respect to its position.

predictions 2: *any-DP* unacceptable in the scope of *every NP*, *if S* (in our above examples, not in every other configuration)

[s every student [vp is anyone of significance]]

Neither S nor VP are DM wrt anyone of significance.

The meanings of sentences with *before, after, more, as*, etc, (or the meanings of their subconstituents) must yet be provided to determine the predictions.

Op-Condition: An npi is acceptable iff it is c-commanded at LF by a constituent that denotes a downward-monotone function.

Env-Condition: An npi is acceptable iff it occurs at LF in a constituent that is downward-monotone with respect to its position.

so far neither condition has an upper hand, they may appear indistinguishable

classical entailment

(22) An object C (classically) entails another object C', $C \Rightarrow C'$, iff

- i) C and C' are of type t and C \rightarrow C', or
- ii) C and C' are of a conjoinable type $(\alpha\beta)$, and for all X of type α , C(X) \Rightarrow C'(X)

Strawson entailment (what we adopted)

- (23) An object C (Strawson) entails another object C', $C \Rightarrow C'$, iff
 - i) C and C' are of type t and C \rightarrow C', or
 - ii) C and C' are of a conjoinable type $(\alpha\beta)$, and for all X of type α s.t. [C](X) and [C'](X) are defined, $C(X) \Rightarrow C'(X)$.

classical entailment \subseteq Strawson entailment (\subseteq contextual (Strawson) entailment)

one puzzle about npis in before-clauses

(24) Aristotle gave talks before he was anyone of significance.

(25) ∃t: Aristotle gave talks at t ∧
 ∃t': t<t' Aristotle was of significance at t' ∧
 ∀t": Aristotle was of significance at t" → t<t'

Strawson entailment + conditions: weak enough veridical presupposition (cf Landman, Condoravdi, Ogihara)

(26) [[before]] = $[\lambda p: \exists t(p(t), \lambda t, \forall t': p(t') \rightarrow t < t']$

is a DM function (hence, Op-Condition predicts acceptability)

(28) *The student who attended any class smiled.

Strawson entailment + conditions: too weak

$$\begin{array}{ll} \mbox{(29)} & [\![the]\!] = [\lambda P: \exists !x(P(x)). \ \lambda Q. \ \exists x: \ P(x) \land Q(x)] \ \mbox{is a DM function}. \\ & \mbox{Assume } P \Rightarrow P', \ [\![the]\!](P')(Q) \ \mbox{and } \neg [\![the]\!](P)(Q) \ \mbox{for some } Q \ \mbox{(hence all defined)}. \\ & \mbox{defined}. \ \mbox{Hence: } \neg \exists x: P(x) \land Q(x) \ \mbox{and } \exists !x: P'(x). \\ & \mbox{Hence: } \neg \exists x: P'(x) \land Q(x). \ \mbox{Hence: } \neg [\![the]\!](P')(Q). \ \mbox{\pounds} \end{array}$$

(30)
$$\lambda X.$$
 [[the student who attended any class smiled]] [any class $\rightarrow X$]
= [$\lambda X: \exists !x: X(\lambda z. \text{ student } x \text{ attended } z).$
 $\exists x: X(\lambda z. \text{ student } x \text{ attended } z) \land \text{ student } x \text{ smiled})$]
is a DM function.

Assume Z \Rightarrow Z', [∃x:Z'(λ z.student x attended z) \wedge student x smiled], [\neg (∃x:Z(λ z.student x attended z) \wedge student x smiled)], and ∃!x:Z/Z'(λ z. student x attended z). Hence: [\neg ∃x:Z'(λ z. student x attended z) \wedge student x smiled)]. \oint Strawson equivalence (unlike in all preceding examples)

(31) $\llbracket \text{the} \rrbracket = [\lambda P: \exists ! x(P(x)). \ \lambda Q. \exists x: P(x) \land Q(x)] \text{ is a UM function.}$

Assume $P \Rightarrow P'$, [[the]](P)(Q) and \neg [[the]](P')(Q) for some Q (hence all defined). Hence: $\neg \exists x$: P'(x) \land Q(x). Hence: $\neg \exists x$: P(x) \land Q(x). Hence: \neg [[the]](P)(Q). \notin

counteracting excessive weakness (but why should this hold?!)

- (32) **Op-Condition:** An npi is acceptable iff it is c-commanded at LF by a constituent that denotes a DM (and not UM) function.
- (33) **Env-Condition:** An npi is acceptable iff it occurs at LF in a constituent that is DM (and not UM) with respect to its position.

(cf Lahiri 1998, Cable 2002, Guerzoni & Sharvit 2007)