Reconstructing Coordinations

Nir Segal, Noga Syon, and Luka Crnič
September 7, 2023 @ SuB 28

The Plan

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook

What are we talking about when we talk about coordination?

Uniformity in Propositional Logic:

p	q	$p \wedge q$	$p \vee q$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	F

Variation in Natural Language:

- [tP Roses are red] and [TP violets are blue].
- Spike bit [DP Tom] and [DP Jerry].
- Woodstock is [PP behind Snoopy] or [PP above him].
- You talk [$A P$ too fast] or [aP too slow].

Is the representation of coordination in logic adequate for representing coordination in natural language?

Two families of approaches

Uniformity, like in Propositional Logic:

$$
\begin{gathered}
{\left[\begin{array}{ll}
x P & \ldots
\end{array}\right]\{\text { and } / \text { or }\}_{C R}[x P \ldots],} \\
\text { where } X P \text { is of type } t
\end{gathered}
$$

Variation, like what we hear (and see):

$$
\left[\begin{array}{lll}
X P & \ldots
\end{array}\right]\{\text { and/or }\}_{F L}\left[\begin{array}{ll}
X P & \ldots .
\end{array}\right] \text {, }
$$

where $X P$ is of a conjoinable type
t is a conjoinable type. If τ is a conjoinable type, then for all types $\sigma,(\sigma \tau)$ is a conjoinable type.

Two families of approaches

Variation like what we hear (and see):

$$
\text { [xP ...] }\{\text { and/or }\}_{F L}[x P \text {...], }
$$

where $X P$ is of a t-conjoinable type

How to maintain sentential coordination despite the variation? Conjunction reduction
"Variation appears only at the surface form..."

- Spike bit Tom $\left\{\right.$ and/or $\left.{ }_{C R}\right\}$ Jerry.
"... uniformity holds at the LF"
- [[Spike bit Tom] [\{and/or $\left.{ }_{C R}\right\}$ [Spike bit Jerry]]
(see, e.g., Ross, 1967; Schein, 2017; Hirsch, 2017)

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook

Some background on coordination

New data: A problem for conjunction reduction Unfolding the data, pt. 1

> Unfolding the data, pt. 2

Towards a derivation: Three candidates Flexibility Conjunction reduction with more movement Conjunction reduction with shifting

Reconstructing conjunction

The following sentence is ambiguous:
(1) Gali and Tali are unlikely to be fired.

Surface scope reading (preferred):
(2) $\quad($ unlikely $($ Gali fired $)) \wedge($ unlikely $($ Tali fired $))$

Inverse scope reading ${ }^{1}$ (targeted meaning):
(3) (unlikely (Gali is fired \wedge Tali is fired))
*Un- modifies Adj head (e.g., Collins, 2023); see prohibit, prevent, etc.

[^0]
More than one reading

It holds that the surface scope reading entails the inverse scope reading:
(4) $\quad($ unlikely $($ Gali fired $)) \wedge($ unlikely $($ Tali fired $))$

$$
\Rightarrow(\text { unlikely }(\text { Gali is fired } \wedge \text { Tali is fired }))
$$

We can bring out the target meaning with the following continuation (which is infelicitous with the stronger meaning):
(5) Gali and Tali are unlikely to be fired. Though one of them will be for sure.

$$
\llbracket(5) \rrbracket= \begin{cases}1 & \text { if }(\text { unlikely }(\text { Gali is fired } \wedge \text { Tali is fired })) \ldots \\ 0 & \text { if }(\text { unlikely }(\text { Gali fired })) \wedge(\text { unlikely }(\text { Tali fired })) \ldots\end{cases}
$$

A mapping problem for (simple) CR

According to (simple) CR, (1)'s LF should be the following:
(6) [[Gali unlikely to be fired] [and ${ }_{C R}$ [Tali unlikely to be fired]]]

Which yields the stronger reading:
(7) $\quad($ unlikely $($ Gali fired $)) \wedge($ unlikely $($ Tali fired $))$ $\neq($ unlikely $($ Gali is fired \wedge Tali is fired $))$

A mapping problem for (simple) CR

The targeted meaning can be derived from the following LF:
(8) $\quad\left[\right.$ unlikely $\left[[\right.$ Gali fired $]\left[\right.$ and $_{C R}$ [Tali fired]]]]

However, this LF cannot be easily mapped to the observed surface form:

The requisite LF under CR: [unlikely [[Gali fired][and ${ }_{C R}$ [Tali fired]]]]

The surface form:
Gali and Tali are unlikely to be fired

Where we are

Monotonicity Coordination	DE predicate	UE predicate
Conjunction	XP and XP	XP and XP
	\{unlikely/prohibited...\}	$\begin{aligned} & \{\text { likely/allowed... }\} \\ & X P \text { or XP } \end{aligned}$
Disjunction	\{unlikely/prohibited...\}	\{likely/allowed...\}

Availability of coordination reconstruction in raising constructions

Where are we going

Monotonicity Coordination	DE predicate	UE predicate
Conjunction	XP and XP	XP and XP
	\{unlikely/prohibited...	$\{$ likely/allowed....
Disjunction	\{unlikely/prohibited...	\{likely/allowed...\}

Availability of coordination reconstruction in raising constructions

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook

Warm-up: Free choice readings of disjunction

(9) Gali is allowed to see The Thing or Eraserhead. $\diamond(p \square q) \Leftrightarrow(\diamond p \vee \diamond q)$
\Rightarrow Gali is allowed to see The Thing $\diamond p$
\Rightarrow Gali is allowed to see Eraserhead
i.e., sentence (9) can convey a conjunctive meaning $(\diamond p \Delta \diamond q)$
(see Kamp, 1973, among many others)

Warm-up: Free choice readings of disjunction

How can FC readings be derived?
(10) Gali is allowed to see The Thing or Eraserhead.
a. $\diamond($ Gali sees The Thing \square Gali sees Eraserhead)

3?
b. $\diamond($ Gali sees The Thing $) \Delta \diamond($ Gali sees Eraserhead $)$

There are different approaches to fleshing out $\}$. On one family of approaches, FC readings are derived by strengthening in grammar:
(11) STR [allowed [... or \ldots]] $\Rightarrow \diamond(\ldots) \wedge \diamond(\ldots)$
(e.g., Fox 2007; see Aloni 2007, Franke 2009, etc., for alternatives)

Warm-up: Free choice readings of disjunction

A surface wide-scope disjunction lacks the FC reading with allowed:
(12) Gali is allowed to see The Thing or she is allowed to see Eraserhead. $\nRightarrow \diamond($ Gali sees The Thing $) \wedge \diamond($ Gali sees Eraserhead $)$

FC Reading Scope Condition
$\diamond \gg$ must hold at LF in order to derive the FC reading.
(see, e.g., Zimmermann, 2000; Geurts, 2005, for a different type of examples)

Reconstructing disjunction

The following sentence is ambiguous:
(13) Gali or Tali are allowed to go to the party.

Simple reading (perhaps preferred):
(14) \diamond (Gali goes to the party) $\checkmark \diamond$ (Tali goes to the party)

Free choice reading (targeted meaning):
(15) $\diamond($ Gali goes to the party $) \Delta \diamond($ Tali goes to the party $)$

More than one reading

It holds that the FC reading entails the simple reading:
(16) \diamond (Gali goes to the party) $\wedge \diamond($ Tali goes to the party $)$
$\Rightarrow \diamond$ (Gali goes to the party) $\vee \diamond$ (Tali goes to the party)

We can demonstrate the existence of the stronger target meaning with the following continuation (which would be infelicitous with the weaker meaning):
(17) A: Gali or Tali are allowed to go to the party.

B: No, you're wrong. Gali isn't allowed to!

A mapping problem, again

According to (simple) CR, (13)'s LF is the following:
(18) [[Gali allowed to go to the party] [or ${ }_{C R}$ [Tali allowed to go to the party]]]

Which violates the scope condition for FC readings:

$$
\diamond \ngtr \vee(\text { but rather } \vee \gg \diamond)
$$

And which accordingly yields only the simple meaning:
(19) \diamond (Gali goes to the party) $\vee \diamond$ (Tali goes to the party)

A mapping problem, again

To the point, the FC reading can be derived by strengthening the following LF:
(20) [allowed [[Gali goes to the party][or ${ }_{C R}$ [Tali goes to the party]]]]]

However, this LF cannot be easily mapped to the surface form:

Intermediate summary: the empirical landscape

Monotonicity	DE predicate	UE predicate
Coordination	XP and XP	
Conjunction	XP and XP \{unlikely/prohibited...\}	XP or XP $\{$ likely/allowed...\}
Disjunction	XP or XP	
\{unlikely/prohibited...\} \ldots	$\{$ likely/allowed...\} ...	

Availability of coordination reconstruction in raising constructions

- Conjunction in subject + unlikely (etc) allows for a weak (inverse) reading. \rightsquigarrow reconstruction of conjunction below unlikely (etc)
- Disjunction in subject + allowed (etc) allows for a free choice reading. \rightsquigarrow reconstruction of conjunction below allow (etc)
- Accounting for this in simple CR runs into a mapping problem.

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook

Revisiting the two families of approaches

Variation, like what we hear (and see):

$$
\left[\begin{array}{ll}
X P & \ldots
\end{array}\right]\{\text { and } / \text { or }\}_{F L}\left[\begin{array}{ll}
X P & . .
\end{array}\right],
$$

where $X P$ is of a conjoinable type

Revisiting the two families of approaches

Uniformity, like in Propositional Logic: [$x P$...] $\{\text { and/or }\}_{C R}\left[\begin{array}{ll}X P & . . .\end{array}\right]$, where $X P$ is of type t

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook
"Variation holds at the LF..."

- Spike bit [Tom \{and/or $\}_{\text {FL }}$ Jerry].
"... meanings of coordinators (etc.) can be shifted."
- Spike bit [[Tom^] \{and/or $\}_{F L}[$ Jerry^]]

A straightforward account of our data:
(21) Gali or Tali are allowed to go to the party.

Surface form under Flexibility:
(22) $\quad\left[\left[\left[\mathrm{Gali}^{\wedge}\right] \text { or }_{F L}\left[\mathrm{Tali}^{\wedge}\right]\right]_{1}\right.$ [allowed $\left[t_{1}\right.$ go to the party $\left.\left.]\right]\right]$

Reconstruction is available:
(23) [allowed [[[Gali^] or ${ }_{F L}\left[\right.$ Tali $\left.\left.^{\wedge}\right]\right]$ go to the party]]

After reconstruction the scope condition is met and the FC reading is derivable (through strengthening or otherwise, as mentioned above):
(24) [STR [allowed [[[Gali^] or rl $_{\text {L }}$ [Tali^]] go to the party $\left.\left.]\right]\right]$

$$
\Rightarrow \diamond(\mathrm{G} \text { party }) \wedge \diamond(\mathrm{T} \text { party })
$$

An analogous derivation is available for the conjunction + unlikely cases:
(25) [unlikely $\left[\left[\left[\right.\right.\right.$ Gali $\left.^{\wedge}\right] \operatorname{and}_{F L}\left[\right.$ Tali $\left.\left.^{\wedge}\right]\right]$ to be fired $\left.]\right] \quad$ (reconstruction at LF) $\Rightarrow($ unlikely $($ Gali is fired \wedge Tali is fired $))$

The parse on which the coordination doesn't reconstruct yields the other readings we mentioned.

Problems

Even though flexibility accounts for coordination reconstruction smoothly, it:

- commits us to a substantive hypothesis according to which grammar incorporates mechanisms that can generate a systematic ambiguity,
- faces several independent challenges.
(see, e.g., Schein, 2017; Hirsch, 2017, 2022; Sauerland, 2018)

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook

CR + Sophisticated movement?

Right node raising?
(26) Suggested derivation of apparent subject DP coordination under CR:
a. Tom and Jerry liked milk.
b. LF of (a):
[[Tom [liked milk]][and ${ }_{C R}$ [Jerry [liked milk]]]]
c. RNR to get the surface form in (a):
$\left[\left[\left[\right.\right.\right.$ Tom $\left.t_{1}\right]\left[\right.$ and $_{C R}\left[\right.$ Jerry $\left.\left.\left.\left.t_{1}\right]\right]\right][\text { liked milk }]_{1}\right]$

CR + Sophisticated movement?

Right node raising on its own? Not sufficient
(27) RNR attempt for subject disjunction + allowed
a. Gali or Tali are allowed to go to the party.
b. (a)'s LF: \boldsymbol{X}
[[G [allowed to go to the party]][or $\cos _{C R}$ [T [allowed to go to the party]]]]
$(\nsim \mathrm{FC})$
c. RNR to get the surface form in (a): \checkmark
$\left[\left[\left[\right.\right.\right.$ Gali $\left.t_{1}\right]\left[\operatorname{or}_{C R}\right.$ [Tali $\left.\left.\left.\left.t_{1}\right]\right]\right][\text { allowed to go to the party }]_{1}\right]$

CR + Sophisticated movement?

Right node raising + further extraction? Not adequate
(28) RNR attempt for subject conjunction + unlikely
a. Gali and Tali are unlikely to be fired.
b. (a)'s alternative LF: \checkmark
[unlikely [[[Gali be fired][and ${ }_{C R}$ [Tali be fired]]]]] (\sim inverse reading)
c. Movement to get the surface form in (a): \boldsymbol{X} $\left[\left[\left[\text { Gali } t_{1}\right]\left[\text { and }_{C R}\left[\text { Tali } t_{1}\right]\right]\right]_{2}\left[\right.\right.$ are unlikely $\left.\left.\left.\left[\underline{t_{2}} \text { [to be fired }\right]_{1}\right]\right]\right]$

(Agreement mismatch, etc.)

Something else is needed ...

CR + Sophisticated movement?

Modal movement?
(29) Covert Across-The-Board Movement
a. $\quad \mathrm{CR}$ base structure:
[[G [allowed to go to the party]][or $\operatorname{cor}_{C R}$ [T [allowed to go to the party]]]]
b. Covert movement of the modal, CR LF:
[allowed ${ }_{3}\left[\left[\right.\right.$ Gali $\left[t_{3}\right.$ go to the party]][or ${ }_{C R}\left[\right.$ Tali $\left[t_{3}\right.$ go to the party]]]]]

$(\sim$ FC, if strengthened)
(cf. Meyer \& Sauerland, 2017, for other kinds of examples)

CR + Sophisticated movement?

Modal movement? Not adequate

Impossible for full coordination examples:
(30) Gali is allowed to go to the party or Tali is allowed to go to the party $\nRightarrow \diamond($ Gali goes to the party $) \wedge \diamond$ (Tali goes to the party $)$

Overgeneration:
(31) Gali or Tali have been exactly twice allowed to go to a party.

We admit an undesirable LF:
[allowed [Gali or Tali went exactly twice to a party]]

Something else is needed ...

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook

CR + Covert shifting operations?

It has been argued that proper names (e.g., Gali) have clausal syntax:
(32) Gali $\rightsquigarrow[\{\exists /$ THE $\}[\lambda \times[\times$ Gali $]]]$

Applying this to our cases may allow us to stick to CR:
(33) Surface: $\left[\operatorname{STR}\left[\exists\left[\lambda x\left[x \text { Gali or }_{C R} \times \text { Tali }\right]\right]\right]_{1}\right.$ [allowed [t_{1} go to the party $\left.]\right]$]
(34) LF: [STR [allowed [[\exists [$\lambda \times\left[\times\right.$ Gali or $_{C R} \times$ Tali $\left.]\right]$ go to the party $\left.\left.]\right]\right]$
(cf. Stowell 1981; Heim \& Kratzer 1998; Champollion 2016 on conjunction)

Treating proper names as clausal nominal? Not enough for two reasons

- We garner some advantages of flexibility but lose some advantages of CR (e.g., scope restriction with respect to negation).
- A generalization to quantificational DPs is needed (flexibility/shifting):
(35) Most professors or all lecturers are allowed to quit their positions.
$\Rightarrow \diamond$ (most profs quit) $\wedge \diamond$ (all lecturers quit)

No escape from flexibility, type-shifting?

The takeaway:

We have to admit some type-shifting and/or other covert operations into our system (e.g., Lasersohn, 1995; Link, 1983; Winter, 2001; Schmitt, 2013; Champollion, 2016).

Some background on coordination

New data: A problem for conjunction reduction
Unfolding the data, pt. 1
Unfolding the data, pt. 2

Towards a derivation: Three candidates
Flexibility
Conjunction reduction with more movement
Conjunction reduction with shifting

Conclusion and outlook

What we showed ... and what should we do?

The data:

Monotonicity	DE predicates	UE predicates	
Coordination	XP and XP	XP and XP	
Conjunction	Mnlikely/prohibited...\}	\ldots	$\{$ likely/allowed...\}

The existence of reading in which $\mathrm{OP}_{\{\mathrm{DE} / \mathrm{UE}\}} \gg\{\wedge / \vee\}$.

Consequences for the theory:

- Flexibility: A straightforward account with independent issues.
- CR: Mapping problem persists ...

Selected references i

Aloni, Maria. 2007. Free choice, modals, and imperatives. Natural Language Semantics 15(1). 65-94. doi:10.1007/s11050-007-9010-2.
Champollion, Lucas. 2016. Ten men and women got married today: Noun coordination and the intersective theory of conjunction. Journal of Semantics 33(3). 561-622. doi:10.1093/jos/ffv008.
Collins, Chris. 2023. Negating gradable adjectives. Natural Language Semantics 31(2). 121-137. doi:10.1007/s11050-023-09204-1.
Fox, Danny. 2007. Free choice and the theory of scalar implicatures. In Uli Sauerland \& Penka Stateva (eds.), Presupposition and implicature in compositional semantics, 71-120. London: Palgrave Macmillan UK. doi: 10.1057/9780230210752_4

Franke, Michael. 2009. Signal to act: Game theory in pragmatics.: University of Amsterdam dissertation.

Geurts, Bart. 2005. Entertaining alternatives: Disjunctions as modals. Natural Language Semantics 13(4). 383-410. doi:10.1007/s11050-005-2052-4.

Selected references ii

Heim, Irene \& Angelika Kratzer. 1998. Semantics in generative grammar. Blackwell.

Hirsch, Aron. 2017. An inflexible semantics for cross-categorial operators: MIT dissertation.

Hirsch, Aron. 2022. A case for conjunction reduction. Ms.
Kamp, Hans. 1973. Free choice permission. Proceedings of the Aristotelian Society 74. 57-74.

Lasersohn, Peter. 1995. Plurality, conjunction and events. Kluwer Academic Publishers.

Link, Godehard. 1983. The logical analysis of plurals and mass terms: A latticetheoretical approach. In Rainer Bäuerle, Christoph Schwarze \& Arnim von Stechow (eds.), Meaning, use, and interpretation of language, 302-323. Berlin, Boston: De Gruyter. doi:10.1515/9783110852820.302.

Meyer, Marie-Christine \& Uli Sauerland. 2017. Covert Across-The-Board Movement revisited: Free choice and the scope of modals. In Proceedings of nels 47 (vol. 2), .

Selected references iii

Partee, Barbara \& Mats Rooth. 1983. Generalized conjunction and type ambiguity. In Rainer Bäuerle, Christoph Schwarze \& Arnim von Stechow (eds.), Meaning, use, and interpretation of language, 361-383. Berlin, Boston: De Gruyter. doi:10.1515/9783110852820.361.

Ross, John Robert. 1967. Constraints on variables in syntax: MIT dissertation.
Sauerland, Uli. 2018. The thought uniqueness hypothesis. In Proceedings of salt 28, .

Schein, Barry. 2017. 'And': Conjunction Reduction Redux. The MIT Press. doi: 10.7551/mitpress/10488.001.0001.

Schmitt, Viola. 2013. More pluralities: University of Vienna dissertation.
Stowell, Tim. 1981. Origins of phrase structure: MIT dissertation.
Szabolcsi, Anna \& Bill Haddican. 2004. Conjunction meets negation: A study in cross-linguistic variation. Journal of Semantics 21(3). 219-249. doi:10.1093/ jos/21.3.219.

Winter, Yoad. 2001. Flexibility principles in boolean semantics. MIT press.

Selected references iv

Zimmermann, Thomas Ede. 2000. Free choice disjunction and epistemic possibility. Natural Language Semantics 8(4). 255-290. doi:10.1023/A: 1011255819284.

[^0]: ${ }^{1}$ The conjunction may have to be stressed to obtain the inverse scope reading, i.e., to avoid a homogeneity inference that would collapse the readings (cf., e.g., Szabolcsi \& Haddican, 2004).

