Scoping out free choice or: How to choose a donkey?

Luka Crnič
June 8, 2023 @ Milano-Biccoca

Le tre cime di Gennaro

Binding

Indefinites

Strengthening

Universal strengthening

Universal strengthening of an existential quantification sentence is possible when the universally strengthened meaning is not among the sentence's alternatives.

$$
\operatorname{STR}\left(S_{\exists x_{p}}\right) \Rightarrow \forall x_{p}: S_{x} \text { only if } \forall x_{p}: S_{x} \notin \operatorname{ALT}\left(S_{\exists x_{p}}\right)
$$

Giulia is allowed to read a(ny) book.
\square
$\Rightarrow \forall x_{\text {book }}: \diamond($ Giulia reads $x)$

Fact: $\forall x_{\text {book }}: \diamond$ (Giulia reads $\left.x\right) \nRightarrow \diamond\left(\exists x_{\text {book }}\right.$:Giulia reads $\left.x\right)$ $\forall x_{\text {book }}: \diamond($ Giulia reads $x) \notin \operatorname{ALT}\left(\diamond\left(\exists x_{\text {book }}\right.\right.$: Giulia reads $\left.)\right)$

Giulia is required to read a(ny) book.

$$
\nRightarrow \forall x_{\text {book }}: \square(\text { Giulia reads } x)
$$

Fact: $\forall x_{\text {book }}: \square$ (Giulia reads $\left.x\right) \Leftrightarrow \square\left(\forall x_{\text {book }}\right.$:Giulia reads $\left.x\right)$
$\forall x_{\text {book }}: \square($ Giulia reads $x) \in \operatorname{ALT}\left(\square\left(\exists x_{\text {book }}\right.\right.$: Giulia reads $\left.\left.x\right)\right)$

Special scope

Some indefinites allow for a special scope construal that is not available to other quantifiers (cf. semantic scope of indefinites outside of their host islands).

If someone smiles, Giulia is happy.

> can $=\left(\exists x_{\text {person }}\right.$ if person \times smiles, Giulia is happy $)$ via unary CFs: $\quad(\exists \mathrm{f}$ if f person smiles, Giulia is happy $)$

If everyone smiles, Giulia is happy.

$$
\text { cannot }=\left(\forall x_{\text {person }} \text { if person } \times \text { smiles, Giulia is happy }\right)
$$

A consequence of special scope

A sentence with a special scope indefinite lacks a special scope universal quantifier alternative (but it does have a low scope universal quantifier alternative).

$$
\begin{aligned}
& (\exists \mathrm{f} \text { OP } \ldots \mathrm{f} \ldots) \\
& \mathrm{OP}(\exists \mathrm{f} \ldots \mathrm{f} \ldots) \\
& \mathrm{OP}(\forall \mathrm{f} \ldots \mathrm{f} \ldots) \\
& (\forall f \mathrm{OP} \ldots \mathrm{f} \ldots) \\
& \quad \in \operatorname{ALT}(\exists \mathrm{f} \text { OP } \ldots \mathrm{f} \ldots)
\end{aligned}
$$

Special scope and alternatives:

If someone smiles, Giulia is happy.
($\exists \mathrm{f}$ if f person smiles, Giulia is happy)
if ($\exists \mathrm{ff}$ person smiles), Giulia is happy
if ($\forall \mathrm{ff}$ person smiles), Giulia is happy
($\forall f$ if f person smiles, Giulia is happy)
$\in \operatorname{ALT}(\exists \mathrm{f}$ if f person smiles, Giulia is happy)

Still, no strengthening under special scope:
($\forall \mathrm{f}$ if f person smiles, Giulia is happy)
\Leftrightarrow if ($\exists \mathrm{ff}$ person smiles), Giulia is happy
$\in \operatorname{ALT}(\exists \mathrm{f}$ if f person smiles, Giulia is happy)

If someone ${ }_{i}$ smiles, they ${ }_{i}$ are happy.
$=(\forall x$ if person \times smiles, person \times is happy $)$

Every farmer who owns a donkey ${ }_{i}$ pets it_{i}.
$=(\forall y(\forall x$ farmer \times owns donkey $y \rightarrow$ farmer \times pets donkey $y))$

Special scope with E-type pronouns:

If someone ${ }_{i}$ smiles, they ${ }_{i}$ are happy.
($\exists \mathrm{f}$ if f person smiles, f person is happy)
notoriously weak truth-conditions

Special scope and alternatives:
($\exists \mathrm{f}$ if f person smiles, f person is happy) if ($\exists \mathrm{ff}$ person smiles), f person is happy if ($\forall f f$ person smiles), f person is happy
($\forall f$ if f person-smiles, f person is happy)
$\in \operatorname{ALT}$ ($\exists \mathrm{f}$ if f person smiles, f person is happy)

Strengthening under special scope:
($\forall \mathrm{f}$ if f person smiles, f person is happy)
\nLeftarrow if ($\exists \mathrm{ff}$ person smiles), f person is happy
$\notin \operatorname{ALT}(\exists \mathrm{f}$ if f person smiles, f person is happy)
$\operatorname{STR}(\exists \mathrm{f}$ if f person smiles, f person is happy $)=$ ($\forall \mathrm{f}$ if f person smiles, f person is happy)
[$=$ strong reading of donkey anaphora]

At least 2 farmers who own a donkey ${ }_{i}$ pet it_{i}.

$$
\neq \forall x_{\text {donkey }}: \mid\{y \mid \text { farmer } y \text { owns donkey } x \wedge y \text { pet } x\} \mid \geq 2
$$

Most farmers who own a donkey ${ }_{i}$ pet it_{i}.
$\neq \forall \mathrm{x}_{\text {donkey }}: \mid\{\mathrm{y} \mid$ farmer y owns donkey $\mathrm{x} \wedge \mathrm{y}$ pet x$\} \mid>$ $1 / 2 \times \mid\{y \mid$ farmer y owns donkey $x\} \mid$

Binary choice functions:

At least 2 farmers who own a donkey ${ }_{i}$ pet it_{i}.
$\exists f \mid\{y \mid$ farmer y owns $f y$ donkey \wedge y pet f y donkey $\} \mid \geq 2$
[= weak reading of donkey anaphora]

Strengthening?

$\forall_{D} f \mid\{y \mid$ farmer y owns $f y$ donkey $\wedge y$ pet $f y$ donkey $\} \mid \geq 2$
[$=$ strong reading of donkey anaphora]

Few people who own a donkey ${ }_{i}$ pet it $_{i}$.
$\neq \forall \mathrm{X}_{\text {donkey }}: \mid\{\mathrm{y} \mid$ person y owns donkey $\mathrm{x} \wedge \mathrm{y}$ pet x$\} \mid<\mathrm{n}_{\text {few }}$ $\# \exists \mathrm{f} / \forall \mathrm{f} \mid\{\mathrm{y} \mid$ person y owns f y donkey $\wedge \mathrm{y}$ pet f y donkey $\} \mid<\mathrm{n}_{\text {few }}$

Intermediate existential closure:
few $_{n}(\exists f \mid\{y \mid$ person y owns $f y$ donkey $\wedge y$ pet $f y$ donkey $\} \mid \geq \mathrm{n})$

Choice functions vs other scope-shifting strategies:

Everyone $_{k}$ [who inherited a donkey ${ }_{i}$ of their $_{k}$ uncle's] pets it_{i}.
$\forall f \forall x \times$ inherit f donkey of x 's unc $\rightarrow x$ pets f donkey of x 's unc

Complex indefinites as antecedents:

If more than two people smile, Giulia is happy.
$\exists \mathrm{f}$ if more than $2_{n} \mathrm{f} \mathrm{n}$-many people smile, Giulia is happy

If more than two people i_{i} smile, they $_{i}$ are happy.
they $=\lambda w$. the more than two people who smiled in w

Selected references

[1] Bar-Lev, Moshe. 2018.
Free choice, Homogeneity, and Innocent Inclusion.
[2] Chierchia, Gennaro. 1995.
Dynamics of Meaning.
[3] Chierchia, Gennaro. 2001.
A puzzle about indefinites.
[4] Chierchia, Gennaro. 2004.
Scalar implicatures, polarity phenomena and the syntax/pragmatics interface.
[5] Chierchia, Gennaro. 2005.
Definites, locality, and intentional identity.
[6] Fox, Danny. 2007.
Free choice and the theory of scalar implicatures.
[7] Singh, Raj, Ken Wexler, Andrea Astle, Deepthi Kamawar \& Danny Fox. 2016.
Children interpret disjunction as conjunction.

