

Scoping out free choice or: How to choose a donkey?

Luka Crnič June 8, 2023 @ Milano-Biccoca ↓ fre cime di Gennaro

Binding

Indefinites

Strengthening

Universal strengthening

Universal strengthening of an existential quantification sentence is possible when the universally strengthened meaning is not among the sentence's alternatives.

STR ($S_{\exists x_P}$) $\Rightarrow \forall x_P:S_x$ only if $\forall x_P:S_x \notin ALT(S_{\exists x_P})$

Giulia is allowed to read a(ny) book.universal strengthening $\Rightarrow \forall x_{book}: \Diamond (Giulia reads x)$

Fact: $\forall x_{book}: \Diamond (Giulia \text{ reads } x) \Leftrightarrow \Diamond (\exists x_{book}:Giulia \text{ reads } x)$ $\forall x_{book}: \Diamond (Giulia \text{ reads } x) \notin ALT(\Diamond (\exists x_{book}: Giulia \text{ reads}))$

Giulia is required to read a(ny) book. $\Rightarrow \forall x_{book}: \Box$ (Giulia reads x)

Fact: $\forall x_{book}: \Box$ (Giulia reads x) $\Leftrightarrow \Box$ ($\forall x_{book}:$ Giulia reads x) $\forall x_{book}: \Box$ (Giulia reads x) \in ALT(\Box ($\exists x_{book}:$ Giulia reads x))

Special scope

Some indefinites allow for a special scope construal that is not available to other quantifiers (cf. semantic scope of indefinites outside of their host islands).

If someone smiles, Giulia is happy.

can = $(\exists x_{person} \text{ if person } x \text{ smiles, Giulia is happy})$ via unary CFs: ($\exists f \text{ if } f \text{ person smiles, Giulia is happy})$

If everyone smiles, Giulia is happy.

cannot = $(\forall x_{person} \text{ if } person \times smiles, Giulia is happy)$

A consequence of special scope

A sentence with a special scope indefinite lacks a special scope universal quantifier alternative (but it does have a low scope universal quantifier alternative).

Special scope and alternatives:

If someone smiles, Giulia is happy.

(∃f if f person smiles, Giulia is happy) if (∃f f person smiles), Giulia is happy if (∀f f person smiles), Giulia is happy (∀f if f person smiles, Giulia is happy)

 $\in ALT(\exists f \text{ if } f \text{ person smiles}, Giulia \text{ is happy})$

Still, no strengthening under special scope:

(∀f if f person smiles, Giulia is happy) ⇔ if (∃f f person smiles), Giulia is happy ∈ ALT(∃f if f person smiles, Giulia is happy)

If someone; smiles, they; are happy.

= ($\forall x \text{ if person } x \text{ smiles, person } x \text{ is happy}$)

Every farmer who owns a donkey_i pets it_i.

= ($\forall y \ (\forall x \ farmer \ x \ owns \ donkey \ y \rightarrow farmer \ x \ pets \ donkey \ y))$

Special scope with E-type pronouns:

If someone; smiles, they; are happy.

(∃f if f person smiles, f person is happy)

notoriously weak truth-conditions

Special scope and alternatives:

```
(∃f if f person smiles, f person is happy)
if (∃f f person smiles), f person is happy
if (∀f f person smiles), f person is happy
(∀f if f person smiles, f person is happy)
∈ ALT(∃f if f person smiles, f person is happy)
```

Strengthening under special scope:

(∀f if f person smiles, f person is happy) ⇔ if (∃f f person smiles), f person is happy ∉ ALT(∃f if f person smiles, f person is happy)

STR(\exists f if f person smiles, f person is happy) = $(\forall f \text{ if } f \text{ person smiles, f person is happy})$

[= strong reading of donkey anaphora]

At least 2 farmers who own a donkey_i pet it_i.

 $\neq \forall x_{donkey}$: $|\{y \mid farmer \ y \ owns \ donkey \ x \land y \ pet \ x\}| \ge 2$

Most farmers who own a donkey $_i$ pet it $_i$.

 $\neq \forall x_{\textit{donkey}}: |\{y \mid \textit{farmer } y \textit{ owns donkey } x \land y \textit{ pet } x\}| > \\ 1/2 \times |\{y \mid \textit{farmer } y \textit{ owns donkey } x\}|$

Binary choice functions:

At least 2 farmers who own a donkey; pet it;.

 $\exists f |\{y | \text{ farmer } y \text{ owns } f y \text{ donkey} \land y \text{ pet } f y \text{ donkey}\}| \ge 2$

[= weak reading of donkey anaphora]

Strengthening?

 $\forall_{D} f |\{y \mid \text{farmer } y \text{ owns } f y \text{ donkey} \land y \text{ pet } f y \text{ donkey}\}| \geq 2$

[= strong reading of donkey anaphora]

Few people who own a donkey $_i$ pet it $_i$.

 $\label{eq:constraint} \begin{array}{l} \neq \forall x_{\textit{donkey}} \colon |\{y \mid \text{person } y \text{ owns donkey } x \land y \text{ pet } x\}| < n_{\textit{few}} \\ \\ \# \exists f / \forall f \ |\{y \mid \text{person } y \text{ owns } f \text{ y donkey} \land y \text{ pet } f \text{ y donkey}\}| < n_{\textit{few}} \end{array}$

Intermediate existential closure:

few_n ($\exists f |\{y | \text{ person y owns } f y \text{ donkey} \land y \text{ pet } f y \text{ donkey}\}| \ge n$)

Choice functions vs other scope-shifting strategies:

Everyone_k [who inherited a donkey_i of their_k uncle's] pets it_i.

 $\forall f \forall x \text{ x inherit } f \text{ donkey of } x's \text{ unc } \rightarrow x \text{ pets } f \text{ donkey of } x's \text{ unc}$

Complex indefinites as antecedents:

If more than two people smile, Giulia is happy. $\exists f \text{ if more than } 2_n \text{ f n-many people smile, Giulia is happy}$

If more than two people; smile, they; are happy.

they = λ w. the more than two people who smiled in w

With some recombination, later Chierchia (et al) thus offers a new perspective on earlier Chierchia (et al).

- Bar-Lev, Moshe. 2018.
 Free choice, Homogeneity, and Innocent Inclusion.
- [2] Chierchia, Gennaro. 1995. Dynamics of Meaning.
- [3] Chierchia, Gennaro. 2001. A puzzle about indefinites.
- [4] Chierchia, Gennaro. 2004.

Scalar implicatures, polarity phenomena and the syntax/pragmatics interface.

- [5] Chierchia, Gennaro. 2005. Definites, locality, and intentional identity.
- [6] Fox, Danny. 2007.

Free choice and the theory of scalar implicatures.

[7] Singh, Raj, Ken Wexler, Andrea Astle, Deepthi Kamawar & Danny Fox. 2016. Children interpret disjunction as conjunction.