Splitting the atoms of subtractive modification

Luka Crnič

> Logic in Language and in Conversation Utrecht University, September 19-20, 2016

Slides: http://bit.ly/exceptives

Background

Exceptives
Approximatives

Ellipsis puzzles

Universals
Existentials
Nouns

Further puzzles

Split

Resolution

Conclusion

Subtractive modification

Subtractive modifiers have an intricate distribution
(1) Connected exceptive modifiers
a. Every book but War and Peace is worth reading.
b. No book but War and Peace is worth reading.
c. *Some book but War and Peace is worth reading.
(2) Approximative modifiers
a. Almost every book is worth reading.
b. Almost no book is worth reading.
c. *Almost some book is worth reading.

Generalization about subtractive modifiers (good enough)

- They can modify universal quantifiers
- They cannot modify existential quantifiers

Subtractive modification

Semantic import of subtractive modifiers corresponds to two salient inferences:

- Subtraction inference
- Negative inference
(3) Every book but War and Peace is worth reading.
a. Sub: Every book that is not War and Peace is worth reading.
b. Neg: Not every book is worth reading. (\Rightarrow WP isn't worth reading.)
(4) Almost every book is worth reading.
a. Sub: Close to every book is worth reading.
b. Neg: Not every book is worth reading.
-What governs the distribution of subtractives?
- How precisely do Sub and Neg come about?

Subtractive modification

Semantic import of subtractive modifiers corresponds to two salient inferences:

- Subtraction inference
- Negative inference
(3) Every book but War and Peace is worth reading.
a. Sub: Every book that is not War and Peace is worth reading.
b. Neg: Not every book is worth reading. (\Rightarrow WP isn't worth reading.)
(4) Almost every book is worth reading.
a. Sub: Close to every book is worth reading.
b. Neg: Not every book is worth reading.
- What governs the distribution of subtractives?
- How precisely do Sub and Neg come about?

Background

Exceptives
Approximatives

Ellipsis puzzles
Universals
Existentials
Nouns

Further puzzles

Split

Resolution

Conclusion

Connected exceptives

von Fintel's (1993) groundbreaking idea was to derive the distribution of (connected) exceptives from the nature of their semantic contribution to the sentences in which they occur (cf. also Moltmann 1995).

- Exceptives are ungrammatical if they give rise to trivial* truth-conditions
- Exceptives are grammatical if they give rise to contingent truth-conditions
* Slightly more precisely: an exception sentence is perceived to be ungrammatical if the trivial truth-conditions are effectively independent of the non-functional (non-logical) material used in the sentence (cf. Gajewski 2002, Chierchia 2013).

Connected exceptives

Modification of universal quantifiers

(5) Every book but War and Peace is worth reading.

Truth-conditions assigned by von Fintel to the sentence
(6) $\underbrace{\text { book } \backslash\{\mathrm{WP}\} \subseteq \text { worth reading }}_{=\text {Every book that is not WP is worth reading }} \wedge$

Slightly reformated and simplified characterization
book $\{$ \{NIP \} © worth reading A book if worth reading

Connected exceptives

Modification of universal quantifiers

(5) Every book but War and Peace is worth reading.

Truth-conditions assigned by von Fintel to the sentence
(6) $\underbrace{\text { book } \backslash\{\mathrm{WP}\} \subseteq \text { worth reading }}_{=\text {Every book that is not WP is worth reading }} \wedge$

$$
\begin{aligned}
& \underbrace{\forall X \subseteq E: ~(\text { book } \backslash X \subseteq \text { worth reading }) \rightarrow\{W P\} \subseteq X}
\end{aligned}
$$

Connected exceptives

Modification of universal quantifiers

(5) Every book but War and Peace is worth reading.

Truth-conditions assigned by von Fintel to the sentence
$\underbrace{\text { book } \backslash\{\mathrm{WP}\} \subseteq \text { worth reading }}_{=\text {Every book that is not WP is worth reading }} \wedge$
$\underbrace{\forall X \subseteq E: ~(\text { book } \backslash X \subseteq \text { worth reading) } \rightarrow\{W P\} \subseteq X}$
$=\{W P\}$ is the minimal set X s.t. every book that is not in X is worth reading

Slightly reformated and simplified characterization
(7) $\begin{gathered}\text { = Every book that is not WP is worth reading } \\ \downarrow \\ \text { Sub }\end{gathered} \xlongequal[\begin{array}{c}\text { book } \backslash\{\mathrm{WP}\} \subseteq \text { wery book is worth reading } \\ \downarrow \\ \mathrm{Neg}\end{array}]{\wedge \text { book worth reading }}$

Connected exceptives

Modification of negative quantifiers

(8) No book but War and Peace is worth reading.
(9) $\underbrace{\text { book } \backslash\{W P\} \cap \text { worth reading }\}=\emptyset}_{=\text {No book that is not WP is worth reading }} \wedge \underbrace{\text { book } \cap \text { worth reading } \neq \emptyset}_{=- \text {No book is worth reading }}$

Modification of existential quantifiers

(10) *Some book hut M/ar and Peace is worth reading (11) book $\backslash\{W P\} \cap$ worth reading $\neq \emptyset \wedge \underbrace{\text { book } \cap \text { worth reading }=\emptyset}$

Some book that is not WP is worth reading
Some book is worth reading

Connected exceptives

Modification of negative quantifiers

(8) No book but War and Peace is worth reading.
(9) $\underbrace{\text { book } \backslash\{W P\} \cap \text { worth reading }\}=\emptyset}_{=\text {No book that is not WP is worth reading }} \wedge \underbrace{\text { book } \cap \text { worth reading } \neq \emptyset}_{=\neg \text { No book is worth reading }}$

Modification of existential quantifiers

(10) *Some book but War and Peace is worth reading.
(11) $\underbrace{\text { book } \backslash\{W P\} \cap \text { worth reading } \neq \emptyset}_{=\text {Some book that is not WP is worth reading }} \wedge \underbrace{\text { book } \cap \text { worth reading }=\emptyset}_{=\neg \text { Some book is worth reading }}$

Connected exceptives and compositionality

(12) Bulky Lexical Item Assumption Exceptive morpheme but encodes both Sub and Neg.

Connected exceptives as modifiers of quantificational determiners

$$
\begin{equation*}
\text { 【but】(E)(P)(Q)(R)=1 iff } \mathrm{Q}(\mathrm{P} \backslash \mathrm{E})(\mathrm{R}) \wedge \neg \mathrm{Q}(\mathrm{P})(\mathrm{R}) \tag{13}
\end{equation*}
$$

Background

Exceptives
Approximatives

Ellipsis puzzles

Universals
Existentials
Nouns

Further puzzles

Split

Resolution

Conclusion

Approximatives

The same strategy of explaining the distribution of approximatives has been applied to subtractives (see, e.g., Penka 2006, Nouwen 2006).

Modification of universal quantifiers

(14) Almast eveny boak is worth reading

Truth-conditions assigned by Penka, Morzycki, etc., to the sentence
(15)
$\exists \cap(\mathrm{O}$ is close to $\|$ every $\| \wedge \mathrm{Q}$ (book) (worth reading))
\qquad

Approximatives

The same strategy of explaining the distribution of approximatives has been applied to subtractives (see, e.g., Penka 2006, Nouwen 2006).

Modification of universal quantifiers

(14) Almost every book is worth reading.

Truth-conditions assigned by Penka, Morzycki, etc., to the sentence
$\underbrace{\exists \mathrm{Q}(\mathrm{Q} \text { is close to } \llbracket \text { every } \wedge Q(\text { book })(\text { worth reading }))}_{=\text {Close to every book is worth reading }} \wedge$

Approximatives

The same strategy of explaining the distribution of approximatives has been applied to subtractives (see, e.g., Penka 2006, Nouwen 2006).

Modification of universal quantifiers

(14) Almost every book is worth reading.

Truth-conditions assigned by Penka, Morzycki, etc., to the sentence

Approximatives

Modification of negative quantifiers

(16) Almost no book is worth reading.
(17) $\underbrace{\exists \mathrm{Q}(\mathrm{Q} \text { is close to } \llbracket \mathrm{no} \mathrm{\rrbracket} \wedge \mathrm{Q}(\text { book })(\text { worth reading }))}_{=\text {Close to no book is worth reading }} \wedge$

Modification of existential quantifiers

 (10) *A1 most some book is worth reading (19) $\exists \mathrm{Q}(\mathrm{Q}$ is close to \llbracket some $\rrbracket \wedge \mathrm{Q}($ book $)($ worth reading $))$ $\underbrace{\text { book } \cap \text { worth reading }=\emptyset}$
Approximatives

Modification of negative quantifiers

(16) Almost no book is worth reading.
(17) $\underbrace{\exists \mathrm{Q}(\mathrm{Q} \text { is close to } \llbracket \mathrm{no} \mathrm{\rrbracket} \wedge \mathrm{Q}(\text { book })(\text { worth reading }))}_{=\text {Close to no book is worth reading }} \wedge$

Modification of existential quantifiers

(18) *Almost some book is worth reading.
(19) $\quad \underbrace{\exists \mathrm{Q}(\mathrm{Q} \text { is close to } \llbracket \text { some } \rrbracket \wedge \mathrm{Q} \text { (book)(worth reading) })^{1}}$
$=$ Close to some book is worth reading
$\underbrace{\text { book } \cap \text { worth reading }=\emptyset}$
$=\neg$ Some book is worth reading
${ }^{1}$ Additional assumptions about the scale of Q are required.

Approximatives and compositionality

(20) Bulky Lexical Item Assumption

Approximative morpheme almost encodes both Sub and Neg.

Almost as a modifier of a quantifier (cf., e.g., Keenan 1996, Morzycki 2001)
(21) \llbracket almost $\rrbracket(Q)(P)(R)=1$ iff $\exists Q^{\prime}\left(Q^{\prime}\right.$ is close to $\left.Q \wedge Q^{\prime}(P)(R)\right) \wedge \neg Q(P)(R)$

Almost as a clausal modifier (e.g., Penka 2006)
(22) \llbracket almost $\rrbracket(p)=1$ iff $\exists \mathrm{q}(\mathrm{q}$ is close to $\mathrm{p} \wedge \mathrm{q}) \wedge \stackrel{\downarrow}{\downarrow}$

Summary

- What governs the distribution of subtractives?
- How precisely do Sub and Neg come about?

One popular set of answers (von Fintel, Penka, Nouwen, i.a.):

- The acceptability of subtractive modifiers is determined on the basis of the
truth-conditions that these help bring about (see esp. von Fintel 1993)
- if the truth-conditions are contingent, the subtractive modifier is acceptable, - if the truth-conditions are trivial, the subtractive modifier is unacceptable.
- The semantic contribution of subtractive modifiers is fully encoded in their lexical meaning (Bulky Lexical Item Assumptions)

Summary

- What governs the distribution of subtractives?
- How precisely do Sub and Neg come about?

One popular set of answers (von Fintel, Penka, Nouwen, i.a.):

- The acceptability of subtractive modifiers is determined on the basis of the truth-conditions that these help bring about (see esp. von Fintel 1993):
- if the truth-conditions are contingent, the subtractive modifier is acceptable,
- if the truth-conditions are trivial, the subtractive modifier is unacceptable.

The semantic contribution of subtractive modifiers
lexical meaning (Bulky Lexical Item Assumptions).

Sub + Neg

Summary

- What governs the distribution of subtractives?
- How precisely do Sub and Neg come about?

One popular set of answers (von Fintel, Penka, Nouwen, i.a.):

- The acceptability of subtractive modifiers is determined on the basis of the truth-conditions that these help bring about (see esp. von Fintel 1993):
- if the truth-conditions are contingent, the subtractive modifier is acceptable,
- if the truth-conditions are trivial, the subtractive modifier is unacceptable.
- The semantic contribution of subtractive modifiers is fully encoded in their lexical meaning (Bulky Lexical Item Assumptions).

$$
\begin{gathered}
{[s . . . \text { almost } / \text { but NP ...] }]} \\
\downarrow \\
\text { Sub }+ \text { Neg }
\end{gathered}
$$

Summary

- What governs the distribution of subtractives?
- How precisely do Sub and Neg come about?

One popular set of answers (von Fintel, Penka, Nouwen, i.a.):

- The acceptability of subtractive modifiers is determined on the basis of the truth-conditions that these help bring about (see esp. von Fintel 1993):
- if the truth-conditions are contingent, the subtractive modifier is acceptable,
- if the truth-conditions are trivial, the subtractive modifier is unacceptable.
- The semantic contribution of subtractive modifiers is fully encoded in their texieal meaning (Bulky Lexical ltem Assumptions).
[s ... almost/but NP ...]
\downarrow
Sub + Neg

Preview

We will explore subtractives in three types of configurations:

- Ellipsis contexts
- Negative quantifiers
- Almost any
and argue for a different take on subtractive modification:
- Sub is triggered by the subtractives
- Neg is triggered by a different operator
- This operator must be syntactically embeddable
- There is no binding/movement dependency between the two

Our conclusions will be shown to be compatible with the analyses in Gajewski 2013 (but not 2008) and Spector 2014. (See also Sadock 1981.)

Background

Exceptives
Approximatives

Ellipsis puzzles

Universals
Existentials
Nouns

Further puzzles

Split

Resolution

Conclusion

Reminder: ellipsis licensing and parallelism
(23) a. John didn't read any book. Bill did \triangle.
b. $\Delta=$ read a book

Parallelism Condition on Ellipsis Licensing
Ellipsis of a constituent ϵ is licensed only if at LF \in is dominated by some constituent, β, such that there is an antecedent constituent in the discourse, α, such that the meaning of α is in the focus value of β, that is, if it holds that $\llbracket \alpha \rrbracket \in \operatorname{ALT}(\beta) .(\alpha, \beta=$ Parallelism Domains, PDs)
$\llbracket[$ neg $[$ John read any book $]] \rrbracket \in \operatorname{ALT}\left(\left[\operatorname{did}_{F}\left[\right.\right.\right.$ Bill ${ }_{F}$ read a book]])

Reminder: ellipsis licensing and parallelism
(23) a. John didn't read any book. Bill did \triangle.
b. $\Delta=$ read a book
(24) Parallelism Condition on Ellipsis Licensing Ellipsis of a constituent ϵ is licensed only if at LF ϵ is dominated by some constituent, β, such that there is an antecedent constituent in the discourse, α, such that the meaning of α is in the focus value of β, that is, if it holds that $\llbracket \alpha \rrbracket \in \operatorname{ALT}(\beta) .(\alpha, \beta=$ Parallelism Domains, PDs)
(25) $\quad \llbracket$ neg [John read any book]]』 $\in \operatorname{ALT}\left(\left[\right.\right.$ didF $_{F}[$ Billf read a book]] $)$

$$
\left(=\left\{(X \text { read a book }), \neg(X \text { read a book }) \mid X \in D_{e}\right\}\right)
$$

Reminder: ellipsis licensing and parallelism
(26) John solved no exercises. ??You had to \triangle to get an A.

```
[John solved no exercises]
[\squarer- [your solve no exercises]
[solve no exercises] & ALT(solve no exercises)
```

Scope Parallelism Generalization (simplified) The scope relations between QPs in the ellipsis P[must be identical to those between their anteceding elements in the antecedent PD. (e.g., Fiengo \& May 1994, Fox 2000, Griffiths and Lipták 2014)

Reminder: ellipsis licensing and parallelism
(26) John solved no exercises. ??You had to \triangle to get an A.
(27) a. [John solved no exercises] available
b. $\left[\square_{\mathrm{F}}[\right.$ your solve no exercises $\left.]\right]$ parse!
c. 【solve no exercises】 \in ALT(solve no exercises)

Scope Parallelism Generalization (simplified) The scope relations between QPs in the ellipsis PD must be identical to those between their anteceding elements in the antecedent PD.
\qquad

Reminder: ellipsis licensing and parallelism
(26) John solved no exercises. ??You had to \triangle to get an A.
(27) a. [John solved no exercises] available
b. [\square f [youf solve no exercises]] parse!
c. 【solve no exercises】 \in ALT(solve no exercises)
(28) a. [John solved no exercises] unavailable
b. [no exercises] $\lambda \times\left[\square_{\mathrm{F}}\right.$ [youF solve x$\left.]\right]$ parse!
c. $\llbracket J$. solved no exercises $\rrbracket \in \operatorname{ALT}\left([\right.$ no exercises $] \lambda \times\left[\square \mathrm{F}\left[\mathrm{uF}_{\mathrm{F}}\right.\right.$ solve x$\left.]\right)$

Scope Parallelism Generalization (simplified) The scope relations between QPs in the ellipsis PD must be identical to those between their anteceding elements in the antecedent PD.

Reminder: ellipsis licensing and parallelism
(26) John solved no exercises. ??You had to \triangle to get an A.
(27) a. [John solved no exercises] available
b. $\quad\left[\square_{\mathrm{F}}\right.$ [you solve no exercises]] parse!
c. solve no exercises】 \in ALT(solve no exercises)
(28) a. [John solved no exercises]
unavailable
b. [no exercises] $\lambda \times\left[\square \mathrm{F}\right.$ [you F_{F} solve x$\left.]\right]$ parse!
c. $\llbracket J$. solved no exercises $\rrbracket \in \operatorname{ALT}\left([\right.$ no exercises $] \lambda \times\left[\square \mathrm{F}\left[\mathrm{u}_{\mathrm{F}}\right.\right.$ solve x$\left.]\right)$
(29) Scope Parallelism Generalization (simplified)

The scope relations between QPs in the ellipsis PD must be identical to those between their anteceding elements in the antecedent PD.
(e.g., Fiengo \& May 1994, Fox 2000, Griffiths and Lipták 2014)
Background
Exceptives
Approximatives

Ellipsis puzzles

Universals
Existentials
Nouns

Further puzzles

Split

Resolution

Conclusion

Two sequences

Sequence with a connected exceptive
(30) In the exam, I solved every exercise but the last one. You really had to \triangle to get an A.

Sequence with an approximative

In the exam, I solved almost every exercise.
You really had to Δ to get an A.

Two sequences

Sequence with a connected exceptive
(30) In the exam, I solved every exercise but the last one. You really had to \triangle to get an A.

Sequence with an approximative
(31) In the exam, I solved almost every exercise. You really had to \triangle to get an A.

Connected exceptives puzzle

(32) In the exam, I solved every exercise but the last one. You really had to \triangle to get an A.

Parse of the first sentence
(33) [I solved [every exercise but the last one]]

Potential parses of the second sentence (34) a T_{F} E Ivour solved Teverv exercise but the last onell] $]$

The first potential parse has a pragmatically marked meaning, while the last one
violates Scope Parallelism Generalization.

Connected exceptives puzzle

(32) In the exam, I solved every exercise but the last one. You really had to \triangle to get an A.

Parse of the first sentence
(33) [I solved [every exercise but the last one]]

Potential parses of the second sentence
(34) a. [$\square \mathrm{F}[$ your solved [every exercise but the last one] $]]$
b. [every exercise but the last one] $\left[\lambda 4\left[\square_{F}\right.\right.$ [you solved $\left.\left.\left.t_{4}\right]\right]\right]$

The first potential parse has a pragmatically marked meaning, while the last one violates Scope Parallelism Generalization.

Approximatives puzzle

(35) In the exam, I solved almost every exercise. You really had to \triangle to get an A.

Parse of the first sentence
(36) a. [I solved [almost every] exercise]
b. [almost [I solved every exercise]]
(QDet modification)
(clausal modification)

Potential parses of the second sentence

The first two parses have a pragmatically marked meaning, while the last two
parses violate Scope Parallelism Generalization. (Moreover, the last one is wed-
ded to movement sui generis; see, e.g., Rooth 1985 for related discussion.)

Approximatives puzzle

(35) In the exam, I solved almost every exercise. You really had to \triangle to get an A.

Parse of the first sentence
(36) a. [I solved [almost every] exercise]
b. [almost [I solved every exercise]]
(QDet modification)
(clausal modification)

Potential parses of the second sentence
(37) a. $\quad \square_{\mathrm{F}}\left[\right.$ you $_{\mathrm{F}}$ solved [almost every exercise]]
b. $\quad \square_{F}$ [almost [you ${ }_{F}$ solved every exercise]]
c. $\quad[$ almost every exercise $][\lambda \times[\square \mathrm{F}$ [youF solved x$]]]$
d. $\quad[$ almost $[\square \mathrm{F}[1$ solved every exercise] $]]$

The first two parses have a pragmatically marked meaning, while the last two parses violate Scope Parallelism Generalization. (Moreover, the last one is wedded to movement sui generis; see, e.g., Rooth 1985 for related discussion.)
Background
Exceptives
Approximatives

Ellipsis puzzles

Universals

Existentials

Nouns

Further puzzles

Split

Resolution

Conclusion
$14=$

Several sequences

(38) John read no book but War and Peace. Mary did \triangle however. $\Delta=$ read some book other than War and Peace
(39) I could find no solution except to use exhaustivity, but Irene might \triangle. $\triangle=$ find some solution other than to use exhaustivity
(40)

John didn't read any book but War and Peace. Mary did \triangle however. $\triangle=$ read some book other than War and Peace

Several sequences

(38) John read no book but War and Peace. Mary did \triangle however. $\Delta=$ read some book other than War and Peace
(39) I could find no solution except to use exhaustivity, but Irene might \triangle. $\Delta=$ find some solution other than to use exhaustivity
(40) John didn't read any book but War and Peace. Mary did \triangle however. $\Delta=$ read some book other than War and Peace

Puzzle

(41) John read no book but War and Peace. Mary did \triangle however.

Parse of the first sentence
(42) a. [John read [no book but WP]]
b. $\quad($ book $\backslash\{\mathrm{WP}\} \cap$ worth reading $=\emptyset) \wedge($ book \cap worth reading $\neq \emptyset)$

Potential parses of the second sentence (13) a. [did [MMary read [some book]]]
b. $\quad[$ didf [Maryf read $[$ some book other than WP]]]
[didf [Maryf read [some book but WPI]]

None of these parses have an appropriate focus value to satisfy Parallelism except
the last one, though this is at the cost of having a contradictory meaning.

Puzzle

(41) John read no book but War and Peace. Mary did \triangle however.

Parse of the first sentence
(42) a. [John read [no book but WP]]
b. $\quad($ book $\backslash\{\mathrm{WP}\} \cap$ worth reading $=\emptyset) \wedge($ book \cap worth reading $\neq \emptyset)$

Potential parses of the second sentence
(43) a. [did $\left[\right.$ Mary ${ }_{F}$ read [some book]]]
b. [did_{F} [Mary F_{F} read [some book other than WP]]]
c. [did_{F} [MaryF read [some book but WP]]]

None of these parses have an appropriate focus value to satisfy Parallelism except the last one, though this is at the cost of having a contradictory meaning.

Background
 Exceptives
 Approximatives

Ellipsis puzzles

Universals
Existentials
Nouns

Further puzzles

Split

Resolution

Conclusion

Two sequences

(44) While Mary aced every course but her electives, most boys only aced a few \triangle. However, every boy did ace almost all of his electives.
(45) Joe threw away every book that he owned but his textbooks. I would never throw away even one \triangle. I'd also not throw away my textbooks.

Puzzle

(46) While Mary aced every course but her electives, most boys only aced a few \triangle. However, every boy did ace almost all of his electives.

Parse of the first sentence
(47) [Mary ${ }_{\times}$[aced [every course but her ${ }_{x}$ electives]]]

Potential parses of the second sentence (18) a. [most boys-1 [only- acod [2 fewf courses]]
b. [most boysF] [onlyf aced [a fewf courses other than their electives $]]$
[most boysf] [onlyf aced [a fewf courses but their electives $]]$

The first parse fails to convey the observed meaning (as witnessed by the continuation), the second parse fails to have an appropriate focus value, and the last parse has a contradictory meaning.

Puzzle

(46) While Mary aced every course but her electives, most boys only aced a few \triangle. However, every boy did ace almost all of his electives.

Parse of the first sentence
(47) [Mary ${ }_{x}$ [aced [every course but her $_{x}$ electives]]]

Potential parses of the second sentence
(48) a. [most boys $]_{\times}$[only ${ }_{F}$ aced [a few w_{F} courses]]
b. [most boys $\left.{ }_{F}\right]_{\mathrm{x}}$ [only y_{F} aced [a few F_{F} courses other than their r_{x} electives]]
c. [most boys $\left.{ }_{F}\right]_{\times}$[only ${ }_{F}$ aced [a few ${ }_{F}$ courses but their ${ }_{x}$ electives]]

The first parse fails to convey the observed meaning (as witnessed by the continuation), the second parse fails to have an appropriate focus value, and the last parse has a contradictory meaning.

Diagnosis

(49) Bulky Lexical Items Assumption
a. Exceptive morpheme but encodes Sub and Neg.
b. Approximative morpheme almost encodes Sub and Neg.
\square

This results in undergeneration: the relevant sequences are either predicted to be unacceptable (Neg triggers a contradictory meaning - Existentials, Nouns) or fails to allow some observed readings (Neg is not observed - Universals).

Diagnosis

(49) Bulky Lexical Items Assumption

a. Exceptive morpheme but encodes Sub and Neg.
b. Approximative morpheme almost encodes Sub and Neg.

If a subtractive in an ellipsis context is contained in an antecedent VP/NP/etc., it must be contained in the antecedent Parallelism Domain. (Parallelism, etc.) (50) [... [Ant ... almost/but NP ...] ...] But then it needs to be contained also in a structurally parallel position in the
ellipsis Parallelism Domain! (Parallelism + Scope Parallelism Generalization)
\qquad be unacceptable (Neg triggers a contradictory meaning - Existentials, Nouns) or fails to allow some ohserved readinge (Neg is not ohserved - Ilniversals)

Diagnosis

(49) Bulky Lexical Items Assumption

a. Exceptive morpheme but encodes Sub and Neg.
b. Approximative morpheme almost encodes Sub and Neg.

If a subtractive in an ellipsis context is contained in an antecedent VP/NP/etc., it must be contained in the antecedent Parallelism Domain. (Parallelism, etc.)
(50) [... [Ant ... almost/but NP ...] ...]

But then it needs to be contained also in a structurally parallel position in the ellipsis Parallelism Domain! (Parallelism + Scope Parallelism Generalization)

$$
\begin{equation*}
\left[\ldots \frac{\text { [Ellipsis } \ldots \text { almost/but NP ...] } \ldots \text {... }}{\downarrow}\right. \tag{51}
\end{equation*}
$$

This results in undergeneration: the relevant sequences are either predicted to be unacceptable (Neg triggers a contradictory meaning - Existentials, Nouns) or fails to allow some observed readings (Neg is not observed - Universals).
BackgroundExceptives
Approximatives
Ellipsis puzzles
Universals
Existentials
Nouns
Further puzzles
Split
Resolution
Conclusion

Another puzzle about connected exceptives

Split readings of negative quantifiers have been a convincing argument that they should be analyzed as involving an existential quantifier (e.g., Zeijlstra 2004)
(52) a. The company need fire no employees.
b. Possible reading: $\neg \square$ (the company fires some employees)
(53) a. You have to read no book this month.
b. Possible reading: $\neg \square$ (you read some book this month)

Split readings are available with negative quantifiers with connected exceptives (54) a. The company need fire no employees but the negligent one.
b. Possible reading: $\neg \square(\mathrm{C}$ fires some employee other than N$)$ (55) You have to read no book but War and Peace this month. Possible reading:

Another puzzle about connected exceptives

Split readings of negative quantifiers have been a convincing argument that they should be analyzed as involving an existential quantifier (e.g., Zeijlstra 2004)
(52) a. The company need fire no employees.
b. Possible reading: $\neg \square$ (the company fires some employees)
(53) a. You have to read no book this month.
b. Possible reading: $\neg \square$ (you read some book this month)

Split readings are available with negative quantifiers with connected exceptives
(54) a. The company need fire no employees but the negligent one.
b. Possible reading: $\neg \square(\mathrm{C}$ fires some employee other than N$)$
(55) a. You have to read no book but War and Peace this month.
b. Possible reading: $\neg \square$ (you read some book other than WP)

Another puzzle about connected exceptives

Modification of existentials with connected exceptives should result in triviality!
(56) The company need fire no employees but the negligent one.
(57) $\llbracket[n e g[\square[C$ fire [SOME employees but N]]]]』』 tautology

Gajewski 2008 presents two further puzzles

- NPIs can be modified by connected exceptives
- Negative quantifiers modified by connected exceptives license NPIs

Another puzzle about connected exceptives

Modification of existentials with connected exceptives should result in triviality!
(56) The company need fire no employees but the negligent one.
(57) $\quad \llbracket[$ neg [\square [C fire [SOME employees but N]]]]]】 = tautology

Gajewski 2008 presents two further puzzles

- NPIs can be modified by connected exceptives
- Negative quantifiers modified by connected exceptives license NPIs

Another puzzle about approximatives

Modification of NPIs by almost is possible
(58) a. In a story that didn't see almost any coverage here ...
b. Global warming: we didn't see almost any snow in the winter.
c. I'm in the 5th week and I didn't see almost any results.
d. I don't pay almost a single cent for any of my art work.
(Horn 2002)

Another puzzle about approximatives

Modification of NPIs by almost is possible
(58) a. In a story that didn't see almost any coverage here ...
b. Global warming: we didn't see almost any snow in the winter.
c. I'm in the 5 th week and I didn't see almost any results.
d. I don't pay almost a single cent for any of my art work.
(Horn 2002)
(59) ... the extra money when you do get called is so huge that you have to push if there's almost any chance that you'll be called.
(Kilbourn-Ceron 2016)
(60) a. An infant without almost any external body skin was born in
b. The best pellet for almost any high end PCP rifle was ...
b. I have made as many original experiments this summer as I almost ever did in : the same time.

Modification of existentials with almost should result in triviality!

Another puzzle about approximatives

Modification of NPIs by almost is possible
(58) a. In a story that didn't see almost any coverage here ...
b. Global warming: we didn't see almost any snow in the winter.
c. I'm in the 5th week and I didn't see almost any results.
d. I don't pay almost a single cent for any of my art work.
(Horn 2002)
(59) ... the extra money when you do get called is so huge that you have to push if there's almost any chance that you'll be called.
(Kilbourn-Ceron 2016)
(60) a. An infant without almost any external body skin was born in ...
b. The best pellet for almost any high end PCP rifle was ...
(61) a. The next morning I felt nearer to Jon than I almost ever did before.
b. I have made as many original experiments this summer as I almost ever did in the same time.

Modification of existentials with almost should result in triviality!
BackgroundExceptives
Approximatives
Ellipsis puzzles
Universals
Existentials
Nouns
Further puzzles
Split
Resolution
Conclusion

Splitting subtractives

(62) Butky Lean Lexical Items Assumption
a. Exceptive morpheme but encodes Sub and Neg.
b. Approximative morpheme almost encodes Sub and Neg.

Schematic of subtractive modification

Splitting subtractives

(62) Butky Lean Lexical Items Assumption
a. Exceptive morpheme but encodes Sub and Neg.
b. Approximative morpheme almost encodes Sub and Neg.

Neg inference is induced by exh

$$
\begin{equation*}
\operatorname{exh}(S)(w)=1 \text { iff } S(w)=1 \wedge \forall S^{\prime} \in \operatorname{ALT}(S): S \nsubseteq S^{\prime} \rightarrow S^{\prime}(w)=0 \tag{63}
\end{equation*}
$$

Splitting subtractives

(62) Butky Lean Lexical Items Assumption
a. Exceptive morpheme but encodes Sub and Neg.
b. Approximative morpheme almost encodes Sub and Neg.

Neg inference is induced by exh

$$
\begin{equation*}
\operatorname{exh}(S)(w)=1 \text { iff } S(w)=1 \wedge \forall S^{\prime} \in A L T(S): S \nsubseteq S^{\prime} \rightarrow S^{\prime}(w)=0 \tag{63}
\end{equation*}
$$

Schematic of subtractive modification
(64) $\begin{array}{ccc}{[\ldots} & {[\operatorname{exh}} \\ & {[\ldots} & \text { almost/but } \ldots]]] \\ & & \downarrow \\ & & \text { Sub }\end{array}$

Splitting connected exceptives
Meaning of connected exceptives
(65) $\quad \llbracket b u t \rrbracket\left(D^{\prime}\right)(D)(Q)=Q\left(D \backslash D^{\prime}\right)$

Derivation of the basic data

Splitting connected exceptives
Meaning of connected exceptives
(65) \quad but】($\left.\mathrm{D}^{\prime}\right)(\mathrm{D})(\mathrm{Q})=\mathrm{Q}\left(\mathrm{D} \backslash \mathrm{D}^{\prime}\right)$
(66) $\quad \llbracket$ every [book [but War and Peace $]]] \rrbracket=\llbracket$ every $\rrbracket(\llbracket$ book $\rrbracket \backslash\{\mathrm{WP}\})$

Derivation of the basic data

Splitting connected exceptives
Meaning of connected exceptives
(65) \quad but $\rrbracket\left(D^{\prime}\right)(D)(Q)=Q\left(D \backslash D^{\prime}\right)$
(66) \llbracket every [book [but War and Peace]]]]』 $=\llbracket$ every $\rrbracket(\llbracket b o o k \rrbracket \backslash\{\mathrm{WP}\})$
(67) $\quad \operatorname{ALT}($ every book but WP) $=\{$ every book, every book but WP $\}$

Derivation of the basic data
(68) a. Every book but War and Peace is worth reading.
b. [exh [[every book but WP] is worth reading]]
(book WP © worth)
(book \& worth)
(69)

No book but War and Peace is worth reading.
[exh [[no book but WP] is worth reading]] (book IWP \cap worth $=0$) \wedge (book \cap worth $\neq 0$)
(70) a. *Some book but War and Peace is worth reading.
b. [exh [[some book but WP] is worth reading]] (book MWP \cap worth \neq a) \wedge (book \cap worth $=$ ($)$

Splitting connected exceptives
Meaning of connected exceptives
(65) $\quad \llbracket b u t \rrbracket\left(D^{\prime}\right)(D)(Q)=Q\left(D \backslash D^{\prime}\right)$
(66) $\quad \llbracket$ every [book [but War and Peace] $]] \rrbracket \rrbracket=\llbracket$ every $\rrbracket(\llbracket$ book $\rrbracket \backslash\{\mathrm{WP}\})$
(67) \quad ALT (every book but WP) $=$ \{every book, every book but WP $\}$

Derivation of the basic data
(68) a. Every book but War and Peace is worth reading.
b. [exh [[every book but WP] is worth reading]]
c. (book $\backslash W P \subseteq$ worth $) \wedge$ (book \nsubseteq worth $)$

Splitting connected exceptives

Meaning of connected exceptives
(65) $\quad \llbracket b u t \rrbracket\left(D^{\prime}\right)(D)(Q)=Q\left(D \backslash D^{\prime}\right)$
(66) $\llbracket[$ every [book [but War and Peace $]]] \rrbracket=\llbracket$ every $\rrbracket(\llbracket$ book $\rrbracket \backslash\{\mathrm{WP}\})$
(67) ALT(every book but WP) $=$ \{every book, every book but WP $\}$

Derivation of the basic data
(68) a. Every book but War and Peace is worth reading.
b. [exh [[every book but WP] is worth reading]]
c. $\quad($ book $\backslash W P \subseteq$ worth $) \wedge($ book \nsubseteq worth $)$
(69) a. No book but War and Peace is worth reading.
b. [exh [[no book but WP] is worth reading]]
c. $\quad($ book $\backslash W P \cap$ worth $=\emptyset) \wedge($ book \cap worth $\neq \emptyset)$

Splitting connected exceptives

Meaning of connected exceptives

(65) $\quad \llbracket b u t \rrbracket\left(D^{\prime}\right)(D)(Q)=Q\left(D \backslash D^{\prime}\right)$
(66) \llbracket every [book [but War and Peace] $]] \rrbracket \rrbracket=\llbracket$ every $\rrbracket(\llbracket b o o k \rrbracket \backslash\{\mathrm{WP}\})$
(67) ALT(every book but WP) $=$ \{every book, every book but WP $\}$

Derivation of the basic data
(68) a. Every book but War and Peace is worth reading.
b. [exh [[every book but WP] is worth reading]]
c. $\quad($ book $\backslash W P \subseteq$ worth $) \wedge($ book \nsubseteq worth $)$
(69) a. No book but War and Peace is worth reading.
b. [exh [[no book but WP] is worth reading]]
c. $\quad($ book $\backslash W P \cap$ worth $=\emptyset) \wedge($ book \cap worth $\neq \emptyset)$
(70) a. *Some book but War and Peace is worth reading.
b. [exh [[some book but WP] is worth reading]]
c. $\quad($ book $\backslash W P \cap$ worth $\neq \emptyset) \wedge($ book \cap worth $=\emptyset)$
(cf. Gajewski 2013, Hirsch 2016)

Splitting approximatives
Meaning of approximatives
(71) \quad almost $\rrbracket(Q)(D)=Q\left(D \backslash D^{\prime}\right)$, where D^{\prime} is small (and context-dependent)
(72) $\llbracket[$ almost every $]$ book $] \rrbracket=\llbracket$ every $\rrbracket\left(\llbracket\right.$ book $\left.\rrbracket \backslash D^{\prime}\right)$, where D^{\prime} is small
(73) \quad ALT $($ almost every book $)=\{$ every book, almost every book $\}$

Derivation of the basic data

Splitting approximatives
Meaning of approximatives
(71) \llbracket almost $\rrbracket(Q)(D)=Q\left(D \backslash D^{\prime}\right)$, where D^{\prime} is small (and context-dependent)
(72) $\quad \llbracket[[$ almost every $]$ book $] \rrbracket=\llbracket$ every $\rrbracket\left(\llbracket\right.$ book $\left.\rrbracket \backslash D^{\prime}\right)$, where D^{\prime} is small
\square
Derivation of the basic data
(74)

(75)

Splitting approximatives
Meaning of approximatives
(71) \llbracket almost $\rrbracket(Q)(D)=Q\left(D \backslash D^{\prime}\right)$, where D^{\prime} is small (and context-dependent)
(72) $\quad \llbracket[[$ almost every $]$ book $] \rrbracket=\llbracket$ every $\rrbracket\left(\llbracket\right.$ book $\left.\rrbracket \backslash D^{\prime}\right)$, where D^{\prime} is small
(73) \quad ALT(almost every book) $=$ \{every book, almost every book $\}$

Derivation of the basic data
(74)

Splitting approximatives
Meaning of approximatives
(71) \llbracket almost $\rrbracket(Q)(D)=Q\left(D \backslash D^{\prime}\right)$, where D^{\prime} is small (and context-dependent)
(72) $\quad \llbracket[$ almost every $]$ book $] \rrbracket=\llbracket$ every $\rrbracket\left(\llbracket\right.$ book $\left.\rrbracket \backslash D^{\prime}\right)$, where D^{\prime} is small
(73) \quad ALT(almost every book) $=$ \{every book, almost every book $\}$

Derivation of the basic data
(74) a. Almost every book is worth reading
b. [exh [[[almost every] book] worth reading]]
c. \quad (book $\backslash \mathrm{D} \subseteq$ worth $) \wedge($ book \nsubseteq worth $)$
(75) a.
b.
c.
(76) a.
b.
c.

Splitting approximatives

Meaning of approximatives

(71) \llbracket almost $\rrbracket(Q)(D)=Q\left(D \backslash D^{\prime}\right)$, where D^{\prime} is small (and context-dependent)
(72) $\quad \llbracket[$ almost every $]$ book $] \rrbracket=\llbracket$ every $\rrbracket\left(\llbracket\right.$ book $\left.\rrbracket \backslash D^{\prime}\right)$, where D^{\prime} is small
(73) \quad ALT(almost every book) $=$ \{every book, almost every book $\}$

Derivation of the basic data
(74) a. Almost every book is worth reading
b. [exh [[[almost every] book] worth reading]]
c. $\quad($ book $\backslash \mathrm{D} \subseteq$ worth $) \wedge($ book \nsubseteq worth $)$
(75) a. Almost no book is worth reading.
b. [exh [[[almost no] book] is worth reading]]
c. $\quad($ book $\backslash \mathrm{D} \cap$ worth $=\emptyset) \wedge($ book \cap worth $\neq \emptyset)$
(76) a.
b.
c.

Splitting approximatives

Meaning of approximatives

(71) \llbracket almost $\rrbracket(Q)(D)=Q\left(D \backslash D^{\prime}\right)$, where D^{\prime} is small (and context-dependent)
(72) $\quad \llbracket[$ almost every $]$ book $] \rrbracket=\llbracket$ every $\rrbracket\left(\llbracket\right.$ book $\left.\rrbracket \backslash D^{\prime}\right)$, where D^{\prime} is small
(73) ALT(almost every book) = \{every book, almost every book $\}$

Derivation of the basic data
(74) a. Almost every book is worth reading
b. [exh [[[almost every] book] worth reading]]
c. \quad (book $\backslash \mathrm{D} \subseteq$ worth $) \wedge($ book \nsubseteq worth $)$
(75) a. Almost no book is worth reading.
b. [exh [[[almost no] book] is worth reading]]
c. $\quad($ book $\backslash \mathrm{D} \cap$ worth $=\emptyset) \wedge($ book \cap worth $\neq \emptyset)$
(76) a. *Almost some book is worth reading.
b. [exh [[[almost some] book] is worth reading]]
c. $\quad($ book $\backslash D \cap$ worth $\neq \emptyset) \wedge($ book \cap worth $=\emptyset)$
(cf. Spector 2014 on almost modifying degree predicates)

Background

Exceptives
Approximatives

Ellipsis puzzles
Universals
Existentials
Nouns

Further puzzles

Split

Resolution

Conclusion

Ellipsis and exh

(77) John solved some of the exercises. Bill did \triangle too. (78) a. $\quad[\operatorname{exh}[$ [John solved some of the exercises $]]$
\quad b. $\left[\operatorname{exh}\left[\right.\right.$ Bill $_{F}$ solved some of the exercises $]$

John solved some of the exercises. Bill did \triangle too. In fact, Bill solved

 all of the exercises.

Fact about exh and ellipsis (Fox 2004)
Since exh does not stand in a movement/binding dependency with its associate, it need not occur in the Parallelism Domains relevant for ellipsis licensing (or in the sentences containing these).

Ellipsis and exh

(77) John solved some of the exercises. Bill did \triangle too.
(78) a. [exh [John solved some of the exercises]]
b. [exh [Bill ${ }_{F}$ solved some of the exercises]]

Fact about exh and ellipsis (Fox 2004)
Since exh does not stand in a movement/binding dependency with its
associate, it need not occur in the Parallelism Domains relevant for
ellipsis licensing (or in the sentences containing these)

Ellipsis and exh

(77) John solved some of the exercises. Bill did \triangle too.
(78) a. [exh [John solved some of the exercises]]
b. [exh [Bill ${ }_{F}$ solved some of the exercises]]
(79) John solved some of the exercises. Bill did \triangle too. In fact, Bill solved all of the exercises.

Fact about exh and ellipsis (Fox 2004)
Since exh does not stand in a movement/binding dependency with its associate, it need not occur in the Parallelism Domains relevant for ellipsis licensing (or in the sentences containing these).

Ellipsis and exh

(77) John solved some of the exercises. Bill did \triangle too.
(78) a. [exh [John solved some of the exercises]]
b. [exh [Bill ${ }_{F}$ solved some of the exercises]]
(79) John solved some of the exercises. Bill did \triangle too. In fact, Bill solved all of the exercises.
(80) a. [exh [John solved some of the exercises]]
b. [Bill solved some of the exercises]

Ellipsis and exh

(77) John solved some of the exercises. Bill did \triangle too.
(78) a. [exh [John solved some of the exercises]]
b. $\left[\right.$ exh [Bill ${ }_{F}$ solved some of the exercises] $]$
(79) John solved some of the exercises. Bill did \triangle too. In fact, Bill solved all of the exercises.
(80) a. [exh [John solved some of the exercises]]
b. [Bill ${ }_{F}$ solved some of the exercises]
(81) Fact about exh and ellipsis (Fox 2004)

Since exh does not stand in a movement/binding dependency with its associate, it need not occur in the Parallelism Domains relevant for ellipsis licensing (or in the sentences containing these).

Universals

Connected exceptives

(82) In the exam, I solved every exercise but the last one. You really had to \triangle to get an A.
(83)
[exh [I solved [every exercise but L.]]]
$\left[\operatorname{exh}\left[\square\left[\right.\right.\right.$ you $_{F}$ solved every exercise other than LI]]
(84)

Approximatives
(85) In the exam, I solved almost every exercise.
You really had to Δ to get an A.
$\begin{array}{rll}\text { (86) } & \text { a. } & [\operatorname{exh}[1 \text { solved [[almost every] exercise but L }]]] \\ & \text { b. } & [\operatorname{exh}[\square \text { [youF solved [[almost every }] \text { exercise }]]]]\end{array}$
(87) \square (' solved every exercise that is not in D) $\wedge \square \square$ (' solved every exercise)

Universals

Connected exceptives

(82) In the exam, I solved every exercise but the last one. You really had to \triangle to get an A .
(83) a. [exh [I solved [every exercise but L]]]]
b. $\quad[$ exh $[\square[$ youf solved every exercise other than L] $]]$
(84) $\square($ I solved every exercise that is not $L) \wedge \neg \square($ I solved every exercise)

Approximatives
(85)

In the evam, I solved almost every exercise.
You really had to \triangle to get an A .
(86)
a. [exh [I solved [[almost every] exercise but L]]] b. $\quad[$ exh $[\square[$ youf solved $[[$ almost every $]$ exercise $]]]]$
(87) \square (I solved every exercise that is not in $D) \wedge \neg \square($ I solved every exercise)

Universals

Connected exceptives

(82) In the exam, I solved every exercise but the last one. You really had to \triangle to get an A.
(83) a. [exh [I solved [every exercise but L]]]
b. $\quad\left[\right.$ exh $\left[\square\right.$ [you $_{F}$ solved every exercise other than L]]]
(84) $\square($ I solved every exercise that is not L$) \wedge \neg \square($ I solved every exercise)

Approximatives
(05)

In the exan, I solved almost every exercise.
You really had to \triangle to get an A.
(86)
a. [exh [I solved [[almost every] exercise but L]]] b. $\quad[$ exh $[\square$ [youF solved [[almost every] exercise $]]]]$

(87)
$\square(I$ solved every exercise that is not in D$) \wedge \neg \square(\mathrm{I}$ solved every exercise)

Universals

Connected exceptives

(82) In the exam, I solved every exercise but the last one.

You really had to \triangle to get an A.
(83) a. [exh [I solved [every exercise but L]]]
b. $\quad\left[\right.$ exh $\left[\square\right.$ [you $_{F}$ solved every exercise other than L]]]
(84) $\square($ I solved every exercise that is not L$) \wedge \neg \square($ I solved every exercise)

Approximatives

(85) In the exam, I solved almost every exercise. You really had to \triangle to get an A.
(86)
[exh [I solved [[almost every] exercise but L]]] b. [[exh [\square [your solved [[almost every] exercise]]]]

Universals

Connected exceptives

(82) In the exam, I solved every exercise but the last one.

You really had to \triangle to get an A.
(83) a. [exh [I solved [every exercise but L]]]
b. $\quad\left[\operatorname{exh}\left[\square\left[\right.\right.\right.$ you $_{F}$ solved every exercise other than L]]]
(84) $\square($ I solved every exercise that is not L$) \wedge \neg \square($ I solved every exercise)

Approximatives

(85) In the exam, I solved almost every exercise. You really had to \triangle to get an A.
(86) a. [exh [I solved [[almost every] exercise but L]]]
b. [exh [\square [your solved [[almost every] exercise]]]]]
(87) \square (I solved every exercise that is not in $D) \wedge \neg \square($ I solved every exercise)

Existentials, nouns

Existentials

(88) John read no book but War and Peace. Mary did \triangle however.
(89) a. [neg [John read [SOME book but WP]]]
b. [Maryf read [SOME book other than WP]]
(90) $\quad(\lambda x$. Mary read $x) \cap$ book $\backslash\{W P\} \neq \emptyset$

Nouns
(91)

While Mary aced every course but her electives, most boys only aced a
few \triangle. However, every boy did ace almost all of his electives. (92) a. [MMaryx aced every course 'but herx electives] b. [most boysF $]_{\times}\left[\right.$onlyF aced a few f_{F} courses other than their el_{x}.] (93) Most boys only aced a few courses other than their electives.

Existentials, nouns

Existentials

(88) John read no book but War and Peace. Mary did \triangle however.
(89) a. [neg [John read [SOME book but WP]]]
b. [Maryf read [SOME book other than WP]]
(90) $\quad(\lambda x$. Mary read $x) \cap$ book $\backslash\{W P\} \neq \emptyset$

Nouns

(91) While Mary aced every course but her electives, most boys only aced a few \triangle. However, every boy did ace almost all of his electives.
(92) a. [Mary x_{x} aced every course but her x_{x} electives]
b. [most boys $]_{\mathrm{F}}$ [only F_{F} aced a few F_{F} courses other than their $\mathrm{r}_{\mathrm{x}} \mathrm{el}$.]
(93) Most boys only aced a few courses other than their electives.

Summary

Neg being split away from Sub allows the subtractive to contribute only a weak meaning to the antecedent Parallelism Domain

The meaning of the anteceded subtractive in the elided constituent can be strengthened - but it need not to be (and not in a parallel position) (05)
[(exh) [... 「Elilisis....almost/other than ...]

This analysis of connected exceptives in ellipsis thus closely resembles the standard treatments of other types of alternations in ellipsis contexts.

Summary

Neg being split away from Sub allows the subtractive to contribute only a weak meaning to the antecedent Parallelism Domain

The meaning of the anteceded subtractive in the elided constituent can be strengthened - but it need not to be (and not in a parallel position):

This analysis of connected exceptives in ellipsis thus closely resembles the standard treatments of other types of alternations in ellipsis contexts.

Summary

Neg being split away from Sub allows the subtractive to contribute only a weak meaning to the antecedent Parallelism Domain

The meaning of the anteceded subtractive in the elided constituent can be strengthened - but it need not to be (and not in a parallel position):

This analysis of connected exceptives in ellipsis thus closely resembles the standard treatments of other types of alternations in ellipsis contexts.

Further puzzles

Negative quantifiers
(96) a. The company need fire no employees but the negligent one. b. Possible reading: $\neg \square(\mathrm{C}$ fires some employee other than N$)$

exh $[$ neg $[\square$ [C fire [SOME employees but N]]]]

Almost NPIs

If you read almost any book on exposure, you know how to shoot. [exh [if you read [[almost any] book on exposure]] [you know ...]] (If you read some of those ten books on exposure, you know how to shoot) $\wedge \neg$ (If you read some of those twelve books on exposure, you know how to shoot)

Further puzzles

Negative quantifiers
(96) a. The company need fire no employees but the negligent one. b. Possible reading: $\neg \square(\mathrm{C}$ fires some employee other than N$)$
(97) $\quad[\operatorname{exh}[\mathrm{neg}[\square[\mathrm{C}$ fire [SOME employees but N$]]]]$
(98) $\quad \neg \square(C$ fire some employees that are not $N) \wedge \square(C$ fire some employees)

Almost NPIs
(an)
If you read almost any book on exposure, you know how to shoot. [exh [if you read [[almost any] book on exposure]] [you know ...]] (If you read some of those ten books on expostre, you hnow how to shoot $) \wedge \neg$ (If you read some of those twelve books on exposure, you know how to shoot)

Further puzzles

Negative quantifiers

(96) a. The company need fire no employees but the negligent one.
b. Possible reading: $\neg \square(\mathrm{C}$ fires some employee other than N$)$
(97) $\quad[$ exh [neg [$\square[\mathrm{C}$ fire [SOME employees but N]]]]
(98) $\quad \neg \square(\mathrm{C}$ fire some employees that are not N$) \wedge \square(\mathrm{C}$ fire some employees)

Almost NPIs

(99) If you read almost any book on exposure, you know how to shoot.
(100) [exh [if you read [[almost any] book on exposure]] [you know ...]]

 know how to shoot)

Further puzzles

Negative quantifiers
(96) a. The company need fire no employees but the negligent one.
b. Possible reading: $\neg \square(\mathrm{C}$ fires some employee other than N$)$
(97) $\quad[$ exh [neg [$\square[\mathrm{C}$ fire [SOME employees but N]]]]]
(98) $\quad \neg \square(C$ fire some employees that are not $N) \wedge \square(C$ fire some employees)

Almost NPIs

(99) If you read almost any book on exposure, you know how to shoot.
(100) [exh [if you read [[almost any] book on exposure]] [you know ...]]
(101) (If you read some of those ten books on exposure, you know how to shoot) $\wedge \neg$ (If you read some of those twelve books on exposure, you know how to shoot)

Background

Exceptives
Approximatives

Ellipsis puzzles
Universals
Existentials
Nouns

Further puzzles

Split

Resolution

Conclusion

Conclusion

- What governs the distribution of subtractives?
- How precisely do Sub and Neg come about?
- Ellipsis (and further) data provided support for:
(102) Lean Lexical Items Assumption
a. Exceptive morpheme but encodes only Sub.
b. Approximative morpheme almost encodes only Sub.
- Neg must be induced higher in the strucure.
- We showed that exh is a plausible candidate for inducing Neg.
- Many questions: variation, locality, obligatoriness, etc.

